Dielectric Material and Foil Surface Roughness Properties Extraction Based on Single-ended Measurements and Phase Constant ($\beta$) Fitting

Shaohui Yong, V. Khilkevich, Srinath Penugonda, Xiao-Ding Cai, Qian Gao, Bidyut Sen, Han Gao, Douglas Yanagawa, Darja Padilla, S. Hinaga, J. Drewniak, J. Fan
{"title":"Dielectric Material and Foil Surface Roughness Properties Extraction Based on Single-ended Measurements and Phase Constant ($\\beta$) Fitting","authors":"Shaohui Yong, V. Khilkevich, Srinath Penugonda, Xiao-Ding Cai, Qian Gao, Bidyut Sen, Han Gao, Douglas Yanagawa, Darja Padilla, S. Hinaga, J. Drewniak, J. Fan","doi":"10.1109/EMCSI38923.2020.9191679","DOIUrl":null,"url":null,"abstract":"Dielectric substrate and foil surface roughness properties of fabricated printed circuit boards (PCB) are important for high-speed channel design. Several stripline-based extraction methods have been developed to characterize dielectric relative permittivity ($\\varepsilon_{r}$), dielectric dissipation factor ($\\text{tan}\\delta$), and foil surface roughness correction factor ($K_{R}$) using measured S-parameters. However, the $\\text{tan}\\delta$ extraction still needs further improvement due to the difficulty in separation of dielectric and conductor loss. The authors found that the frequency-dependence of the stripline phase constant ($\\beta$) is helpful to determine the $\\text{tan}\\delta$ without introducing high sensitivity to foil surface roughness. By introducing a causal dielectric frequency-dependent model, $\\varepsilon_{r}$ and $\\text{tan}\\delta$ are extracted by fitting measured $\\beta$. The foil surface roughness property (correction factor $K_{R}$) is obtained using the conductor loss calculated by subtracting extracted dielectric loss from the total loss. To demonstrate the feasibility of the proposed method examples are provided using simulation data and fabricated PCB.","PeriodicalId":189322,"journal":{"name":"2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCSI38923.2020.9191679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Dielectric substrate and foil surface roughness properties of fabricated printed circuit boards (PCB) are important for high-speed channel design. Several stripline-based extraction methods have been developed to characterize dielectric relative permittivity ($\varepsilon_{r}$), dielectric dissipation factor ($\text{tan}\delta$), and foil surface roughness correction factor ($K_{R}$) using measured S-parameters. However, the $\text{tan}\delta$ extraction still needs further improvement due to the difficulty in separation of dielectric and conductor loss. The authors found that the frequency-dependence of the stripline phase constant ($\beta$) is helpful to determine the $\text{tan}\delta$ without introducing high sensitivity to foil surface roughness. By introducing a causal dielectric frequency-dependent model, $\varepsilon_{r}$ and $\text{tan}\delta$ are extracted by fitting measured $\beta$. The foil surface roughness property (correction factor $K_{R}$) is obtained using the conductor loss calculated by subtracting extracted dielectric loss from the total loss. To demonstrate the feasibility of the proposed method examples are provided using simulation data and fabricated PCB.
基于单端测量和相位常数($\beta$)拟合的介电材料和箔表面粗糙度提取
印制电路板的介电基片和箔片表面粗糙度对高速通道设计具有重要意义。已经开发了几种基于带状线的提取方法,利用测量的s参数来表征介电相对介电常数($\varepsilon_{r}$),介电耗散因子($\text{tan}\delta$)和箔表面粗糙度校正因子($K_{R}$)。然而,由于介电损耗和导体损耗难以分离,$\text{tan}\delta$提取仍需进一步改进。作者发现,带状线相位常数($\beta$)的频率依赖性有助于确定$\text{tan}\delta$,而不会引入对箔表面粗糙度的高灵敏度。引入介电频率相关因果模型,拟合测得的$\beta$,提取出$\varepsilon_{r}$和$\text{tan}\delta$。利用从总损耗中减去提取的介电损耗计算出的导体损耗,获得箔表面粗糙度(校正因子$K_{R}$)。为了验证所提方法的可行性,给出了用仿真数据和印制电路板制作的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信