DLion

Rankyung Hong, A. Chandra
{"title":"DLion","authors":"Rankyung Hong, A. Chandra","doi":"10.1145/3431379.3460643","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) is a popular technique for building models from large quantities of data such as pictures, videos, messages generated from edges devices at rapid pace all over the world. It is often infeasible to migrate large quantities of data from the edges to centralized data center(s) over WANs for training due to privacy, cost, and performance reasons. At the same time, training large DL models on edge devices is infeasible due to their limited resources. An attractive alternative for DL training distributed data is to use micro-clouds---small-scale clouds deployed near edge devices in multiple locations. However, micro-clouds present the challenges of both computation and network resource heterogeneity as well as dynamism. In this paper, we introduce DLion, a new and generic decentralized distributed DL system designed to address the key challenges in micro-cloud environments, in order to reduce overall training time and improve model accuracy. We present three key techniques in DLion: (1) Weighted dynamic batching to maximize data parallelism for dealing with heterogeneous and dynamic compute capacity, (2) Per-link prioritized gradient exchange to reduce communication overhead for model updates based on available network capacity, and (3) Direct knowledge transfer to improve model accuracy by merging the best performing model parameters. We build a prototype of DLion on top of TensorFlow and show that DLion achieves up to 4.2X speedup in an Amazon GPU cluster, and up to 2X speed up and 26% higher model accuracy in a CPU cluster over four state-of-the-art distributed DL systems.","PeriodicalId":343991,"journal":{"name":"Proceedings of the 30th International Symposium on High-Performance Parallel and Distributed Computing","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th International Symposium on High-Performance Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3431379.3460643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Deep learning (DL) is a popular technique for building models from large quantities of data such as pictures, videos, messages generated from edges devices at rapid pace all over the world. It is often infeasible to migrate large quantities of data from the edges to centralized data center(s) over WANs for training due to privacy, cost, and performance reasons. At the same time, training large DL models on edge devices is infeasible due to their limited resources. An attractive alternative for DL training distributed data is to use micro-clouds---small-scale clouds deployed near edge devices in multiple locations. However, micro-clouds present the challenges of both computation and network resource heterogeneity as well as dynamism. In this paper, we introduce DLion, a new and generic decentralized distributed DL system designed to address the key challenges in micro-cloud environments, in order to reduce overall training time and improve model accuracy. We present three key techniques in DLion: (1) Weighted dynamic batching to maximize data parallelism for dealing with heterogeneous and dynamic compute capacity, (2) Per-link prioritized gradient exchange to reduce communication overhead for model updates based on available network capacity, and (3) Direct knowledge transfer to improve model accuracy by merging the best performing model parameters. We build a prototype of DLion on top of TensorFlow and show that DLion achieves up to 4.2X speedup in an Amazon GPU cluster, and up to 2X speed up and 26% higher model accuracy in a CPU cluster over four state-of-the-art distributed DL systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信