Voting multiple classifiers decisions for spam detection

N. Barigou, F. Barigou, B. Atmani
{"title":"Voting multiple classifiers decisions for spam detection","authors":"N. Barigou, F. Barigou, B. Atmani","doi":"10.1109/ICITES.2012.6216599","DOIUrl":null,"url":null,"abstract":"A considerable amount of research and technology development has been emerged to address the problem of spam detection. Based on a Boolean cellular approach and naïve Bayes technique built as individual classifiers, we evaluate a novel method that combines these two classifiers to determine whether we can more accurately detect Spam. Experimental results show that the proposed combination increases the classification performance as measured on LingSpam dataset.","PeriodicalId":137864,"journal":{"name":"2012 International Conference on Information Technology and e-Services","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Information Technology and e-Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITES.2012.6216599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A considerable amount of research and technology development has been emerged to address the problem of spam detection. Based on a Boolean cellular approach and naïve Bayes technique built as individual classifiers, we evaluate a novel method that combines these two classifiers to determine whether we can more accurately detect Spam. Experimental results show that the proposed combination increases the classification performance as measured on LingSpam dataset.
为垃圾邮件检测投票多个分类器决策
为了解决垃圾邮件检测问题,已经出现了大量的研究和技术开发。基于布尔细胞方法和naïve贝叶斯技术作为单独的分类器,我们评估了一种结合这两个分类器的新方法,以确定我们是否可以更准确地检测垃圾邮件。实验结果表明,该组合在LingSpam数据集上提高了分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信