Identifying Duplicate and Contradictory Information in Wikipedia

Sarah Weissman, S. Ayhan, Joshua Bradley, Jimmy J. Lin
{"title":"Identifying Duplicate and Contradictory Information in Wikipedia","authors":"Sarah Weissman, S. Ayhan, Joshua Bradley, Jimmy J. Lin","doi":"10.1145/2756406.2756947","DOIUrl":null,"url":null,"abstract":"In this paper, we identify sentences in Wikipedia articles that are either identical or highly similar by applying techniques for near-duplicate detection of web pages. This is accomplished with a MapReduce implementation of minhash to identify sentences with high Jaccard similarity, followed by a pass to generate sentence clusters. Based on manual examination, we discovered that these clusters can be categorized into six different types: templates, identical sentences, copyediting, factual drift, references, and other. Two of these categories are particularly interesting: identical sentences quantify the extent to which content in Wikipedia is copied and pasted, and near-duplicate sentences that state contradictory facts point to quality issues in Wikipedia.","PeriodicalId":256118,"journal":{"name":"Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2756406.2756947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, we identify sentences in Wikipedia articles that are either identical or highly similar by applying techniques for near-duplicate detection of web pages. This is accomplished with a MapReduce implementation of minhash to identify sentences with high Jaccard similarity, followed by a pass to generate sentence clusters. Based on manual examination, we discovered that these clusters can be categorized into six different types: templates, identical sentences, copyediting, factual drift, references, and other. Two of these categories are particularly interesting: identical sentences quantify the extent to which content in Wikipedia is copied and pasted, and near-duplicate sentences that state contradictory facts point to quality issues in Wikipedia.
识别维基百科中重复和矛盾的信息
在本文中,我们通过应用网页近重复检测技术来识别维基百科文章中相同或高度相似的句子。这是通过MapReduce实现的minhash来识别具有高Jaccard相似性的句子,然后通过生成句子集群来完成的。基于手工检查,我们发现这些集群可以分为六种不同的类型:模板、相同的句子、抄写、事实漂移、引用和其他。其中两个类别特别有趣:相同的句子量化了维基百科中内容被复制和粘贴的程度,而近乎重复的句子陈述了相互矛盾的事实,指出了维基百科的质量问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信