The Motivic Group H−1,−1BM

C. Haesemeyer, C. Weibel
{"title":"The Motivic Group H−1,−1BM","authors":"C. Haesemeyer, C. Weibel","doi":"10.23943/princeton/9780691191041.003.0007","DOIUrl":null,"url":null,"abstract":"This chapter develops some more of the properties of the Borel–Moore homology groups 𝐻𝐵𝑀\n −1,−1(𝑋). It shows that it is contravariant in 𝑋 for finite flat maps, and has a functorial pushforward for proper maps. If 𝑋 is smooth and proper (in characteristic 0), 𝐻𝐵𝑀\n −1,−1(𝑋) agrees with 𝐻2𝒅+1,𝒅+1(𝑋, ℤ), and has a nice presentation, which this chapter explores in more depth. The main result in this chapter is the proposition that: if 𝑋 is a norm variety for ª and 𝑘 is 𝓁-special then the image of 𝐻𝐵𝑀\n −1,−1(𝑋) → 𝑘× is the group of units 𝑏 such that ª ∪ 𝑏 vanishes in 𝐾𝑀\n 𝑛+1(𝑘)/𝓁. Again, this chapter also explores the historic trajectory of its equations.","PeriodicalId":145287,"journal":{"name":"The Norm Residue Theorem in Motivic Cohomology","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Norm Residue Theorem in Motivic Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23943/princeton/9780691191041.003.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter develops some more of the properties of the Borel–Moore homology groups 𝐻𝐵𝑀 −1,−1(𝑋). It shows that it is contravariant in 𝑋 for finite flat maps, and has a functorial pushforward for proper maps. If 𝑋 is smooth and proper (in characteristic 0), 𝐻𝐵𝑀 −1,−1(𝑋) agrees with 𝐻2𝒅+1,𝒅+1(𝑋, ℤ), and has a nice presentation, which this chapter explores in more depth. The main result in this chapter is the proposition that: if 𝑋 is a norm variety for ª and 𝑘 is 𝓁-special then the image of 𝐻𝐵𝑀 −1,−1(𝑋) → 𝑘× is the group of units 𝑏 such that ª ∪ 𝑏 vanishes in 𝐾𝑀 𝑛+1(𝑘)/𝓁. Again, this chapter also explores the historic trajectory of its equations.
动力组H−1,−1BM
本章进一步讨论了Borel-Moore同调群𝐻𝑀−1,−1(𝑋)的性质。结果表明,对于有限平面映射,它在𝑋中是逆变的,对于固有映射,它有一个泛函推进。如果𝑋平滑且合适(特征为0),那么𝐻𝑀−1,−1(𝑋)与𝐻2 +1,+1(𝑋,0)一致,并且具有很好的表现形式,本章将对此进行更深入的探讨。本章主要结果的命题:如果𝑋是规范各种ª和𝑘𝓁-special的形象𝐻𝐵𝑀−1−1(𝑋)→𝑘×的集团单位𝑏这样ª∪𝑏消失在𝐾𝑀𝑛+ 1(𝑘)/𝓁。同样,本章还探讨了其方程的历史轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信