Automatic X-ray image segmentation for threat detection

Jimin Liang, B. Abidi, M. Abidi
{"title":"Automatic X-ray image segmentation for threat detection","authors":"Jimin Liang, B. Abidi, M. Abidi","doi":"10.1109/ICCIMA.2003.1238158","DOIUrl":null,"url":null,"abstract":"Multithresholding and data clustering techniques are used to segment X-ray images for low intensity threat detection in carry-on luggage. The widely used statistical validity indexes methods do not generate a reasonable estimation of the optimal number of clusters and produce a biased evaluation of the segmented images acquired by different segmentation methods. We propose a method based on the Radon transform to determine the optimal number of clusters and to evaluate the segmented images. The method utilizes both statistical and spatial information from the image and is computationally efficient. Experimental results show that the proposed method produces results consistent with human visual assessment.","PeriodicalId":385362,"journal":{"name":"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.2003.1238158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Multithresholding and data clustering techniques are used to segment X-ray images for low intensity threat detection in carry-on luggage. The widely used statistical validity indexes methods do not generate a reasonable estimation of the optimal number of clusters and produce a biased evaluation of the segmented images acquired by different segmentation methods. We propose a method based on the Radon transform to determine the optimal number of clusters and to evaluate the segmented images. The method utilizes both statistical and spatial information from the image and is computationally efficient. Experimental results show that the proposed method produces results consistent with human visual assessment.
用于威胁检测的自动x射线图像分割
采用多阈值分割和数据聚类技术对随身行李中的低强度威胁进行图像分割。目前广泛使用的统计效度指标方法不能合理估计最优聚类数量,并且对不同分割方法获得的分割图像产生有偏差的评价。我们提出了一种基于Radon变换的方法来确定最优簇数并对分割后的图像进行评估。该方法利用了图像的统计信息和空间信息,计算效率高。实验结果表明,该方法得到的结果与人的视觉评价一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信