Entailment analysis for improving Chinese textual entailment system

Shih-Hung Wu, Shan-Shun Yang, Hung-Sheng Chiu, Liang-Pu Chen, Ren-Dar Yang
{"title":"Entailment analysis for improving Chinese textual entailment system","authors":"Shih-Hung Wu, Shan-Shun Yang, Hung-Sheng Chiu, Liang-Pu Chen, Ren-Dar Yang","doi":"10.1109/IRI.2013.6642456","DOIUrl":null,"url":null,"abstract":"Textual Entailment (TE) is a critical issue in natural language processing (NLP); many NLP applications can be benefited from the recognition of textual entailment (RTE). In this paper we report our observation on how to improve the Chinese textual entailment system and the experiment results on the NTCIR-10 RITE-2 dataset. To complement the traditional machine learning approach, which treat every input pair equally with the same features and the same process, our system classify different entailment cases and treat them separately. The experiment results show great improvement.","PeriodicalId":418492,"journal":{"name":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","volume":"418 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2013.6642456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Textual Entailment (TE) is a critical issue in natural language processing (NLP); many NLP applications can be benefited from the recognition of textual entailment (RTE). In this paper we report our observation on how to improve the Chinese textual entailment system and the experiment results on the NTCIR-10 RITE-2 dataset. To complement the traditional machine learning approach, which treat every input pair equally with the same features and the same process, our system classify different entailment cases and treat them separately. The experiment results show great improvement.
改进汉语文本蕴涵系统的蕴涵分析
文本蕴涵(TE)是自然语言处理(NLP)中的一个关键问题。文本蕴涵识别(RTE)可以使许多自然语言处理应用受益。本文报告了我们对如何改进中文文本蕴涵系统的观察和在ntir -10 RITE-2数据集上的实验结果。为了补充传统的机器学习方法,即对具有相同特征和相同过程的每个输入对进行平等处理,我们的系统对不同的蕴涵案例进行分类并分别处理。实验结果表明,改进效果显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信