{"title":"Simultaneous linearity and efficiency enhancement of a digitally-assisted GaN power amplifier for 64-QAM","authors":"Monte K. Watanabe, R. Snyder, T. LaRocca","doi":"10.1109/RFIC.2013.6569622","DOIUrl":null,"url":null,"abstract":"The first dynamic 4-bit, digitally-assisted GaN high power amplifier (DAPA) system transmitting 7.68Msymbol/s with 64-QAM modulation is presented. An FPGA is programmed to generate the pulse-shaped 64-QAM signal, perform envelope estimation, and time-align the RF and digital control signals arriving at the DAPA. A high-speed, level-shifting circuit converts the FPGA's low-voltage differential signaling (LVDS) DAPA control signals into single-ended logic levels required for the depletion-mode GaN HEMT DAPA auxiliary cells. Measured results show 9.6% DC power savings, 23% improved PAE, and 23% higher output power at 4% EVMRMS compared to the static PA configuration.","PeriodicalId":203521,"journal":{"name":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2013.6569622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The first dynamic 4-bit, digitally-assisted GaN high power amplifier (DAPA) system transmitting 7.68Msymbol/s with 64-QAM modulation is presented. An FPGA is programmed to generate the pulse-shaped 64-QAM signal, perform envelope estimation, and time-align the RF and digital control signals arriving at the DAPA. A high-speed, level-shifting circuit converts the FPGA's low-voltage differential signaling (LVDS) DAPA control signals into single-ended logic levels required for the depletion-mode GaN HEMT DAPA auxiliary cells. Measured results show 9.6% DC power savings, 23% improved PAE, and 23% higher output power at 4% EVMRMS compared to the static PA configuration.