Node Level Primitives for Parallel Exact Inference

Yinglong Xia, V. Prasanna
{"title":"Node Level Primitives for Parallel Exact Inference","authors":"Yinglong Xia, V. Prasanna","doi":"10.1109/SBAC-PAD.2007.18","DOIUrl":null,"url":null,"abstract":"We present node level primitives for parallel exact inference on an arbitrary Bayesian network. We explore the probability representation on each node of Bayesian networks and each clique of junction trees. We study the operations with respect to these probability representations and categorize the operations into four node level primitives: table extension, table multiplication, table division, and table marginalization. Exact inference on Bayesian networks can be implemented based on these node level primitives. We develop parallel algorithms for the above and achieve parallel computational complexity of O(omega2r(omega+1)N/p), O(Nromega) space complexity and scalability up to O(romega), where N is the number of cliques in the junction tree, r is the number of states of a random variable, w is the maximal size of the cliques, and p is the number of processors. Experimental results illustrate the scalability of our parallel algorithms for each of these primitives.","PeriodicalId":261956,"journal":{"name":"19th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'07)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD.2007.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

We present node level primitives for parallel exact inference on an arbitrary Bayesian network. We explore the probability representation on each node of Bayesian networks and each clique of junction trees. We study the operations with respect to these probability representations and categorize the operations into four node level primitives: table extension, table multiplication, table division, and table marginalization. Exact inference on Bayesian networks can be implemented based on these node level primitives. We develop parallel algorithms for the above and achieve parallel computational complexity of O(omega2r(omega+1)N/p), O(Nromega) space complexity and scalability up to O(romega), where N is the number of cliques in the junction tree, r is the number of states of a random variable, w is the maximal size of the cliques, and p is the number of processors. Experimental results illustrate the scalability of our parallel algorithms for each of these primitives.
并行精确推理的节点级原语
在任意贝叶斯网络上提出了并行精确推理的节点级原语。我们探索了贝叶斯网络的每个节点和连接树的每个团的概率表示。我们研究了与这些概率表示相关的操作,并将这些操作分为四个节点级原语:表扩展、表乘法、表除法和表边缘化。基于这些节点级原语可以实现贝叶斯网络的精确推理。我们针对上述问题开发了并行算法,实现了并行计算复杂度为O(omega2r(omega+1)N/p),空间复杂度为O(Nromega),可扩展性高达O(romega),其中N为结树中的团数,r为随机变量的状态数,w为团的最大大小,p为处理器的数量。实验结果说明了我们的并行算法对这些原语的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信