A New Approach for Modeling Correlated Gaussian Errors using Frequency Domain Overbounding

S. Langel, Omar García Crespillo, M. Joerger
{"title":"A New Approach for Modeling Correlated Gaussian Errors using Frequency Domain Overbounding","authors":"S. Langel, Omar García Crespillo, M. Joerger","doi":"10.1109/PLANS46316.2020.9110192","DOIUrl":null,"url":null,"abstract":"This paper presents a new method to overbound Kalman filter (KF) based estimate error distributions in the presence of uncertain, time-correlated noise. Each noise component is a zero-mean Gaussian random process whose autocorrelation sequence (ACS) is stationary over the filtering duration. We show that the KF covariance matrix overbounds the estimate error distribution when the noise models overbound the Fourier transform of a windowed version of the ACS. The method is evaluated using covariance analysis for an example application in GPS-based relative position estimation.","PeriodicalId":273568,"journal":{"name":"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS46316.2020.9110192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a new method to overbound Kalman filter (KF) based estimate error distributions in the presence of uncertain, time-correlated noise. Each noise component is a zero-mean Gaussian random process whose autocorrelation sequence (ACS) is stationary over the filtering duration. We show that the KF covariance matrix overbounds the estimate error distribution when the noise models overbound the Fourier transform of a windowed version of the ACS. The method is evaluated using covariance analysis for an example application in GPS-based relative position estimation.
基于频域超边界的相关高斯误差建模新方法
本文提出了一种基于过界卡尔曼滤波(KF)的不确定时间相关噪声估计误差分布的新方法。每个噪声分量是一个零均值高斯随机过程,其自相关序列(ACS)在滤波持续时间内是平稳的。我们表明,当噪声模型超过ACS的窗口版本的傅里叶变换时,KF协方差矩阵会超过估计误差分布。以基于gps的相对位置估计为例,对该方法进行了协方差分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信