{"title":"Further improving geometric fitting","authors":"K. Kanatani","doi":"10.1109/3DIM.2005.49","DOIUrl":null,"url":null,"abstract":"We give a formal definition of geometric fitting in a way that suits computer vision applications. We point out that the performance of geometric fitting should be evaluated in the limit of small noise rather than in the limit of a large number of data as recommended in the statistical literature. Taking the KCR lower bound as an optimality requirement and focusing on the linearized constraint case, we compare the accuracy of Kanatani's renormalization with maximum likelihood (ML) approaches including the FNS of Chojnacki et al. and the HEIV of Leedan and Meer. Our analysis reveals the existence of a method superior to all these.","PeriodicalId":170883,"journal":{"name":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2005.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
We give a formal definition of geometric fitting in a way that suits computer vision applications. We point out that the performance of geometric fitting should be evaluated in the limit of small noise rather than in the limit of a large number of data as recommended in the statistical literature. Taking the KCR lower bound as an optimality requirement and focusing on the linearized constraint case, we compare the accuracy of Kanatani's renormalization with maximum likelihood (ML) approaches including the FNS of Chojnacki et al. and the HEIV of Leedan and Meer. Our analysis reveals the existence of a method superior to all these.