Span Evolution and Aerodynamic Challenge of Suspension Bridges

Y. Ge, H. Xiang
{"title":"Span Evolution and Aerodynamic Challenge of Suspension Bridges","authors":"Y. Ge, H. Xiang","doi":"10.2749/istanbul.2023.0376","DOIUrl":null,"url":null,"abstract":"Suspension bridges as the longest bridge have experienced with span length increase for 140 years. Long-span suspension bridges are becoming lighter, more flexible, and lower damping, which result in more sensitive to wind actions. The most challenging problem among wind-induced responses identified is aerodynamic instability or flutter, and some control measures have to be adopted to flutter stabilization. There are four successful aerodynamic countermeasures, including central vertical stabilizer firstly installed in Runyang Bridge built in 2005, side horizontal stabilizers recently adopted in Nansha Bridge in 2018, central slotted twin-box girder firstly applied in Xihoumen Bridge in 2009, and the combination of central slot and vertical stabilizer used in Akashi Kaikyo Bridge in 1998. The twin-box girder of Xihoumen Bridge has been further studied up to 3,000m, and the widely-slotted twin-box girder has been proposed to a 5,000m suspension bridge.","PeriodicalId":237396,"journal":{"name":"IABSE Symposium, Istanbul 2023: Long Span Bridges","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Symposium, Istanbul 2023: Long Span Bridges","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/istanbul.2023.0376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Suspension bridges as the longest bridge have experienced with span length increase for 140 years. Long-span suspension bridges are becoming lighter, more flexible, and lower damping, which result in more sensitive to wind actions. The most challenging problem among wind-induced responses identified is aerodynamic instability or flutter, and some control measures have to be adopted to flutter stabilization. There are four successful aerodynamic countermeasures, including central vertical stabilizer firstly installed in Runyang Bridge built in 2005, side horizontal stabilizers recently adopted in Nansha Bridge in 2018, central slotted twin-box girder firstly applied in Xihoumen Bridge in 2009, and the combination of central slot and vertical stabilizer used in Akashi Kaikyo Bridge in 1998. The twin-box girder of Xihoumen Bridge has been further studied up to 3,000m, and the widely-slotted twin-box girder has been proposed to a 5,000m suspension bridge.
悬索桥跨度演变与气动挑战
悬索桥作为世界上最长的桥梁,在140多年的发展历程中跨径不断增加。大跨度悬索桥正变得更轻、更灵活、更低阻尼,从而对风的作用更敏感。风致响应中最具挑战性的问题是气动失稳或颤振,必须采取一些控制措施来稳定颤振。有四种成功的气动对策,包括2005年首次在润阳大桥安装的中心垂直稳定器,2018年在南沙大桥最近采用的侧向水平稳定器,2009年在西后门大桥首次应用的中心开槽双箱梁,以及1998年在明石海京大桥采用的中心开槽与垂直稳定器组合。对西堠门大桥的双箱梁进行了深入的研究,直至3000m,并提出了宽开槽双箱梁的方案用于一座5000 m悬索桥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信