Multi-task Deep Learning for Colon Cancer Grading

Thi Le Trinh Vuong, Daigeun Lee, J. T. Kwak, Kyungeun Kim
{"title":"Multi-task Deep Learning for Colon Cancer Grading","authors":"Thi Le Trinh Vuong, Daigeun Lee, J. T. Kwak, Kyungeun Kim","doi":"10.1109/ICEIC49074.2020.9051305","DOIUrl":null,"url":null,"abstract":"Automated cancer grading is an important subject of study in digital pathology. In this paper, we introduce a multi-task learning approach to analyze digitized pathology images. The approach performs both classification and regression tasks in combination with a deep convolutional neural network to predict the tumor grade. Employing tissue microarrays (TMAs) and whole slide images (WSI), the proposed method achieved an accuracy of 85.91% in classifying colon tissues into four distinctive pathology classes, including benign and well differentiated, moderately differentiated, and poorly differentiated tumors.","PeriodicalId":271345,"journal":{"name":"2020 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"288 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC49074.2020.9051305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Automated cancer grading is an important subject of study in digital pathology. In this paper, we introduce a multi-task learning approach to analyze digitized pathology images. The approach performs both classification and regression tasks in combination with a deep convolutional neural network to predict the tumor grade. Employing tissue microarrays (TMAs) and whole slide images (WSI), the proposed method achieved an accuracy of 85.91% in classifying colon tissues into four distinctive pathology classes, including benign and well differentiated, moderately differentiated, and poorly differentiated tumors.
多任务深度学习用于结肠癌分级
肿瘤自动分级是数字病理学研究的一个重要课题。在本文中,我们介绍了一种多任务学习方法来分析数字化病理图像。该方法结合深度卷积神经网络进行分类和回归任务,以预测肿瘤级别。采用组织微阵列(tma)和全切片图像(WSI),该方法将结肠组织分为良性、高分化、中分化和低分化四种不同的病理类型,准确率为85.91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信