Evolving Connectionist and Hybrid Systems: Methods, Tools, Applications

N. Kasabov
{"title":"Evolving Connectionist and Hybrid Systems: Methods, Tools, Applications","authors":"N. Kasabov","doi":"10.1109/HIS.2007.74","DOIUrl":null,"url":null,"abstract":"Evolving Connectionist Systems (ECOS) are neural network systems that develop their structure, functionality and internal representation through continuous learning from data and interaction with the environment. ECOS can also evolve through generations of populations using evolutionary computation, but the focus of the presentation is on: (1) Adaptive learning and improvement of each individual model; (2) Knowledge representation, knowledge adaptation and knowledge extraction. The learning process can be: on-line, off-line, incremental, supervised, unsupervised, active, sleep/dream, etc.","PeriodicalId":359991,"journal":{"name":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2007.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Evolving Connectionist Systems (ECOS) are neural network systems that develop their structure, functionality and internal representation through continuous learning from data and interaction with the environment. ECOS can also evolve through generations of populations using evolutionary computation, but the focus of the presentation is on: (1) Adaptive learning and improvement of each individual model; (2) Knowledge representation, knowledge adaptation and knowledge extraction. The learning process can be: on-line, off-line, incremental, supervised, unsupervised, active, sleep/dream, etc.
不断发展的联结主义和混合系统:方法、工具和应用
进化连接系统(ECOS)是一种神经网络系统,它通过不断地从数据中学习和与环境的互动来发展其结构、功能和内部表征。ECOS也可以通过使用进化计算进行世代进化,但本文的重点是:(1)每个个体模型的自适应学习和改进;(2)知识表示、知识适应和知识提取。学习过程可以是:在线的、离线的、增量的、有监督的、无监督的、主动的、睡眠/做梦的等等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信