Machine Learning Algorithm on Keystroke Dynamics Pattern

Purvashi Baynath, K. M. Sunjiv Soyjaudah, Maleika Heenaye-Mamode Khan
{"title":"Machine Learning Algorithm on Keystroke Dynamics Pattern","authors":"Purvashi Baynath, K. M. Sunjiv Soyjaudah, Maleika Heenaye-Mamode Khan","doi":"10.1109/SPC.2018.8704135","DOIUrl":null,"url":null,"abstract":"In this paper, the machine learning algorithms have been applied on distinct features of Keystroke Dynamics. The Machine learning is important to correctly authenticate an individual. In this work, the complex models and algorithms help to determine when the person is a genuine user or an imposter through learning. The algorithms that has been studied and deployed,are the Fuzzy Expert System (FESs), NeuroEvolution of the augmenting topology (NEAT), Proposed NeuroEvolution of the augmenting topology, Support Vector Machine (SVM) and Chaotic Neural Network. From the algorithms applied, the proposed NEAT algorithms performs better in terms of recognition rate on both databases used where the recognition rate achieved above 95.6%.","PeriodicalId":432464,"journal":{"name":"2018 IEEE Conference on Systems, Process and Control (ICSPC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Systems, Process and Control (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPC.2018.8704135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, the machine learning algorithms have been applied on distinct features of Keystroke Dynamics. The Machine learning is important to correctly authenticate an individual. In this work, the complex models and algorithms help to determine when the person is a genuine user or an imposter through learning. The algorithms that has been studied and deployed,are the Fuzzy Expert System (FESs), NeuroEvolution of the augmenting topology (NEAT), Proposed NeuroEvolution of the augmenting topology, Support Vector Machine (SVM) and Chaotic Neural Network. From the algorithms applied, the proposed NEAT algorithms performs better in terms of recognition rate on both databases used where the recognition rate achieved above 95.6%.
键击动态模式的机器学习算法
在本文中,机器学习算法已经应用于击键动力学的不同特征。机器学习对于正确验证个人身份非常重要。在这项工作中,复杂的模型和算法有助于通过学习来确定这个人是真正的用户还是冒名顶替者。已经研究和部署的算法有模糊专家系统(FESs)、增强拓扑的神经进化(NEAT)、增强拓扑的拟议神经进化、支持向量机(SVM)和混沌神经网络。从所应用的算法来看,本文提出的NEAT算法在两种数据库上的识别率都较好,识别率均达到95.6%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信