Maximum likelihood estimation of distribution grid topology and parameters from Smart Meter data

Lisa Laurent, Jean-Sébastien Brouillon, G. Ferrari-Trecate
{"title":"Maximum likelihood estimation of distribution grid topology and parameters from Smart Meter data","authors":"Lisa Laurent, Jean-Sébastien Brouillon, G. Ferrari-Trecate","doi":"10.1109/GridEdge54130.2023.10102720","DOIUrl":null,"url":null,"abstract":"This paper defines a Maximum Likelihood Estimator (MLE) for the admittance matrix estimation of distribution grids, utilising voltage magnitude and power measurements collected only from common, unsychronised measuring devices (Smart Meters). First, we present a model of the grid, as well as the existing MLE based on voltage and current phasor measurements. Then, this problem formulation is adjusted for phase-less measurements using common assumptions. The effect of these assumptions is compared to the initial problem in various scenarios. Finally, numerical experiments on a popular IEEE benchmark network indicate promising results. Missing data can greatly disrupt estimation methods. Not measuring the voltage phase only adds 30% of error to the admittance matrix estimate in realistic conditions. Moreover, the sensitivity to measurement noise is similar with and without the phase.","PeriodicalId":377998,"journal":{"name":"2023 IEEE PES Grid Edge Technologies Conference & Exposition (Grid Edge)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE PES Grid Edge Technologies Conference & Exposition (Grid Edge)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GridEdge54130.2023.10102720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper defines a Maximum Likelihood Estimator (MLE) for the admittance matrix estimation of distribution grids, utilising voltage magnitude and power measurements collected only from common, unsychronised measuring devices (Smart Meters). First, we present a model of the grid, as well as the existing MLE based on voltage and current phasor measurements. Then, this problem formulation is adjusted for phase-less measurements using common assumptions. The effect of these assumptions is compared to the initial problem in various scenarios. Finally, numerical experiments on a popular IEEE benchmark network indicate promising results. Missing data can greatly disrupt estimation methods. Not measuring the voltage phase only adds 30% of error to the admittance matrix estimate in realistic conditions. Moreover, the sensitivity to measurement noise is similar with and without the phase.
从智能电表数据的配电网拓扑和参数的最大似然估计
本文定义了配电网导纳矩阵估计的最大似然估计器(MLE),利用仅从普通的非同步测量设备(智能电表)收集的电压幅度和功率测量。首先,我们提出了一个网格模型,以及现有的基于电压和电流相量测量的最大似然估计。然后,使用一般假设对该问题公式进行无相测量调整。在各种情况下,将这些假设的效果与初始问题进行比较。最后,在一个常用的IEEE基准网络上进行了数值实验,得到了良好的结果。缺少数据会极大地破坏估计方法。在实际情况下,不测量电压相位只会给导纳矩阵估计增加30%的误差。此外,在有无相位的情况下,对测量噪声的灵敏度相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信