Towards Learning-Aided Configuration in 3D Printing: Feasibility Study and Application to Defect Prediction

Benoit Amand, Maxime Cordy, P. Heymans, M. Acher, Paul Temple, J. Jézéquel
{"title":"Towards Learning-Aided Configuration in 3D Printing: Feasibility Study and Application to Defect Prediction","authors":"Benoit Amand, Maxime Cordy, P. Heymans, M. Acher, Paul Temple, J. Jézéquel","doi":"10.1145/3302333.3302338","DOIUrl":null,"url":null,"abstract":"Configurators rely on logical constraints over parameters to aid users and determine the validity of a configuration. However, for some domains, capturing such configuration knowledge is hard, if not infeasible. This is the case in the 3D printing industry, where parametric 3D object models contain the list of parameters and their value domains, but no explicit constraints. This calls for a complementary approach that learns what configurations are valid based on previous experiences. In this paper, we report on preliminary experiments showing the capability of state-of-the-art classification algorithms to assist the configuration process. While machine learning holds its promises when it comes to evaluation scores, an in-depth analysis reveals the opportunity to combine the classifiers with constraint solvers.","PeriodicalId":300036,"journal":{"name":"Proceedings of the 13th International Workshop on Variability Modelling of Software-Intensive Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Workshop on Variability Modelling of Software-Intensive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3302333.3302338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Configurators rely on logical constraints over parameters to aid users and determine the validity of a configuration. However, for some domains, capturing such configuration knowledge is hard, if not infeasible. This is the case in the 3D printing industry, where parametric 3D object models contain the list of parameters and their value domains, but no explicit constraints. This calls for a complementary approach that learns what configurations are valid based on previous experiences. In this paper, we report on preliminary experiments showing the capability of state-of-the-art classification algorithms to assist the configuration process. While machine learning holds its promises when it comes to evaluation scores, an in-depth analysis reveals the opportunity to combine the classifiers with constraint solvers.
面向3D打印的学习辅助配置:可行性研究及缺陷预测应用
配置器依赖于参数的逻辑约束来帮助用户并确定配置的有效性。然而,对于某些领域,获取这样的配置知识是困难的,如果不是不可行的。这就是3D打印行业的情况,其中参数化3D对象模型包含参数列表及其值域,但没有明确的约束。这需要一种补充方法,根据以前的经验了解哪些配置是有效的。在本文中,我们报告了初步的实验,显示了最先进的分类算法协助配置过程的能力。虽然机器学习在评估分数方面有它的承诺,但深入的分析揭示了将分类器与约束求解器结合起来的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信