Analysis of Clustering Technique in Android Malware Detection

Aiman Ahmed Abu Samra, Osama A. Ghanem
{"title":"Analysis of Clustering Technique in Android Malware Detection","authors":"Aiman Ahmed Abu Samra, Osama A. Ghanem","doi":"10.1109/IMIS.2013.111","DOIUrl":null,"url":null,"abstract":"Mobile computing is an important field in information technology, because of the wide use of mobile devises and mobile applications. Clustering gives good results with information retrieval (IR), It aims to automatically put similar applications in one cluster. In this paper, we evaluate clustering techniques in Android applications. We explain how we can apply clustering techniques in malware detection of Android applications. We also use machine learning techniques in auto detection of malware applications in the Android market. Our evaluation is given by clustering two categories of Android applications: business, and tools. We have extracted 18,174 Android's application files in our evaluation using clustering. We extract the features of the applications from applications' XML-files which contains permissions requested by applications. The results gives a positive indication of using unsupervised machine learning techniques in malware detection in mobile applications using a combination of the application information and xml Android Manifest files.","PeriodicalId":425979,"journal":{"name":"2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMIS.2013.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

Mobile computing is an important field in information technology, because of the wide use of mobile devises and mobile applications. Clustering gives good results with information retrieval (IR), It aims to automatically put similar applications in one cluster. In this paper, we evaluate clustering techniques in Android applications. We explain how we can apply clustering techniques in malware detection of Android applications. We also use machine learning techniques in auto detection of malware applications in the Android market. Our evaluation is given by clustering two categories of Android applications: business, and tools. We have extracted 18,174 Android's application files in our evaluation using clustering. We extract the features of the applications from applications' XML-files which contains permissions requested by applications. The results gives a positive indication of using unsupervised machine learning techniques in malware detection in mobile applications using a combination of the application information and xml Android Manifest files.
Android恶意软件检测中的聚类技术分析
由于移动设备和移动应用程序的广泛使用,移动计算是信息技术的一个重要领域。聚类在信息检索方面取得了很好的效果,它的目的是将相似的应用自动放到一个聚类中。在本文中,我们评估了Android应用中的集群技术。我们解释了如何将集群技术应用于Android应用程序的恶意软件检测。我们还使用机器学习技术自动检测Android市场中的恶意软件应用程序。我们的评估是通过对两类Android应用程序进行聚类得出的:商业应用程序和工具应用程序。在我们的评估中,我们使用集群提取了18,174个Android应用程序文件。我们从应用程序的xml文件中提取应用程序的特性,其中包含应用程序请求的权限。结果给出了一个积极的迹象,即在移动应用程序中使用无监督机器学习技术检测恶意软件,使用应用程序信息和xml Android Manifest文件的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信