Learning texton models for real-time scene context

A. Flint, I. Reid, D. W. Murray
{"title":"Learning texton models for real-time scene context","authors":"A. Flint, I. Reid, D. W. Murray","doi":"10.1109/CVPRW.2009.5204356","DOIUrl":null,"url":null,"abstract":"We present a new model for scene context based on the distribution of textons within images. Our approach provides continuous, consistent scene gist throughout a video sequence and is suitable for applications in which the camera regularly views uninformative parts of the scene. We show that our model outperforms the state-of-the-art for place recognition. We further show how to deduce the camera orientation from our scene gist and finally show how our system can be applied to active object search.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present a new model for scene context based on the distribution of textons within images. Our approach provides continuous, consistent scene gist throughout a video sequence and is suitable for applications in which the camera regularly views uninformative parts of the scene. We show that our model outperforms the state-of-the-art for place recognition. We further show how to deduce the camera orientation from our scene gist and finally show how our system can be applied to active object search.
学习实时场景上下文的文本模型
提出了一种基于图像内文本分布的场景上下文模型。我们的方法在整个视频序列中提供连续,一致的场景要点,适用于摄像机定期查看场景中无信息部分的应用。我们表明,我们的模型在位置识别方面优于最先进的技术。我们进一步展示了如何从场景要点推断相机方向,最后展示了我们的系统如何应用于活动对象搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信