Counting on matrices

S. Mukherjee, S. Mukherjee
{"title":"Counting on matrices","authors":"S. Mukherjee, S. Mukherjee","doi":"10.54550/eca2021v1s3r23","DOIUrl":null,"url":null,"abstract":"In this paper, we have found formulas for the number of rectangular and symmetric matrices with the line sums divisible by a given integer. As an application, we have derived an explicit formula enumerating the number of traceless n × n, (0,1) symmetric matrices having line sums divisible by a given integer, which leads to an enumeration of labeled regular graphs with n vertices. Also, we have found a formula for the weighted enumerator (in terms of rows and columns) of rectangular matrices, which subsequently yields some nice identities satisfying curious reciprocity phenomena.","PeriodicalId":340033,"journal":{"name":"Enumerative Combinatorics and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enumerative Combinatorics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54550/eca2021v1s3r23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we have found formulas for the number of rectangular and symmetric matrices with the line sums divisible by a given integer. As an application, we have derived an explicit formula enumerating the number of traceless n × n, (0,1) symmetric matrices having line sums divisible by a given integer, which leads to an enumeration of labeled regular graphs with n vertices. Also, we have found a formula for the weighted enumerator (in terms of rows and columns) of rectangular matrices, which subsequently yields some nice identities satisfying curious reciprocity phenomena.
对矩阵进行计数
本文给出了行和能被给定整数整除的矩形和对称矩阵个数的公式。作为一个应用,我们推导了一个显式公式,该公式列举了行和可被给定整数整除的n × n,(0,1)个无迹对称矩阵的个数,从而得到了具有n个顶点的标记正则图的枚举。此外,我们还找到了矩形矩阵的加权枚举数(以行和列为单位)的公式,它随后产生了一些很好的恒等式,满足了奇怪的互易现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信