Blind sub-Nyquist GNSS signal detection

Ondrej Daniel, J. Raasakka, Pekka Peltola, Markus Fröhle, A. Rodriguez, H. Wymeersch, J. Nurmi
{"title":"Blind sub-Nyquist GNSS signal detection","authors":"Ondrej Daniel, J. Raasakka, Pekka Peltola, Markus Fröhle, A. Rodriguez, H. Wymeersch, J. Nurmi","doi":"10.1109/ICASSP.2016.7472944","DOIUrl":null,"url":null,"abstract":"A satellite navigation receiver traditionally searches for positioning signals using an acquisition procedure. In situations, in which the required information is only a binary decision whether at least one positioning signal is present or absent, the procedure represents an unnecessarily complex solution. This paper presents a different approach for the binary detection problem with significantly reduced computational complexity. The approach is based on a novel decision metric which is utilized to design two binary detectors. The first detector operates under the theoretical assumption of additive white Gaussian noise and is evaluated by means of Receiver Operating Characteristics. The second one considers also additional interferences and is suitable to operate in a real environment. Its performance is verified using a signal captured by a receiver front-end.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A satellite navigation receiver traditionally searches for positioning signals using an acquisition procedure. In situations, in which the required information is only a binary decision whether at least one positioning signal is present or absent, the procedure represents an unnecessarily complex solution. This paper presents a different approach for the binary detection problem with significantly reduced computational complexity. The approach is based on a novel decision metric which is utilized to design two binary detectors. The first detector operates under the theoretical assumption of additive white Gaussian noise and is evaluated by means of Receiver Operating Characteristics. The second one considers also additional interferences and is suitable to operate in a real environment. Its performance is verified using a signal captured by a receiver front-end.
盲亚奈奎斯特GNSS信号检测
传统上,卫星导航接收机使用采集程序搜索定位信号。如果所需要的信息仅仅是一个二值决定,即是否存在至少一个定位信号,则该过程代表了不必要的复杂解决方案。本文提出了一种不同的方法来解决二进制检测问题,大大降低了计算复杂度。该方法基于一种新的决策度量来设计两个二元检测器。第一个检测器在加性高斯白噪声的理论假设下工作,并通过接收机工作特性进行评估。第二种方法也考虑了额外的干扰,适用于真实环境。利用接收机前端捕获的信号验证其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信