{"title":"Influence of heat treatment on the structure and properties of polyamide 6/ halloysite nanocomposites","authors":"K. Mencel, Łukasz Kemnitz","doi":"10.2478/amtm-2019-0002","DOIUrl":null,"url":null,"abstract":"Abstract The nanocomposites of polyamide 6 (PA6) with halloysite nanotubes (HNT) were prepared by extrusion using co-rotating twin-screw extruder and then the standard test specimens were injected using a screw injection moulding machine. The content of HNT in the nanocomposites was 5 or 10 weight percent. The heat treatment of unmodified PA6 and nanocomposites was carried out in silicone oil in temp. 150±2°C. The samples were annealed for 3 hours and then cooled at a rate of 4 K/min. Differential scanning calorimetry (DSC) causes annealing to increase the crystallinity of the polyamide matrix. After an annealing treatment a nanocomposite with better mechanical properties was obtained. Halloysite nanotubes in polyamide matrix play the role of a nucleating agent.","PeriodicalId":379471,"journal":{"name":"Archives of Mechanical Technology and Materials","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanical Technology and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amtm-2019-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The nanocomposites of polyamide 6 (PA6) with halloysite nanotubes (HNT) were prepared by extrusion using co-rotating twin-screw extruder and then the standard test specimens were injected using a screw injection moulding machine. The content of HNT in the nanocomposites was 5 or 10 weight percent. The heat treatment of unmodified PA6 and nanocomposites was carried out in silicone oil in temp. 150±2°C. The samples were annealed for 3 hours and then cooled at a rate of 4 K/min. Differential scanning calorimetry (DSC) causes annealing to increase the crystallinity of the polyamide matrix. After an annealing treatment a nanocomposite with better mechanical properties was obtained. Halloysite nanotubes in polyamide matrix play the role of a nucleating agent.