State space analysis of singular systems via orthogonal series

P. Paraskevopoulos, F. Koumboulis, A. Tsirikos
{"title":"State space analysis of singular systems via orthogonal series","authors":"P. Paraskevopoulos, F. Koumboulis, A. Tsirikos","doi":"10.1109/CDC.1991.261875","DOIUrl":null,"url":null,"abstract":"Three novel alternative approaches for state-space analysis of singular systems via orthogonal series are presented. All three approaches yield explicit expressions for the state vector coefficient matrix involving only multiplication of matrices of small dimensions. The combination of the advantages (computational, structural, etc.) of all three approaches appears to be superior to the advantages of all known techniques for the analysis of singular systems via orthogonal series. The first two approaches make use of the differentiation operational matrix. The third approach has the advantage that it does not use any system decomposition or state transformation.<<ETX>>","PeriodicalId":344553,"journal":{"name":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","volume":"64 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1991.261875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Three novel alternative approaches for state-space analysis of singular systems via orthogonal series are presented. All three approaches yield explicit expressions for the state vector coefficient matrix involving only multiplication of matrices of small dimensions. The combination of the advantages (computational, structural, etc.) of all three approaches appears to be superior to the advantages of all known techniques for the analysis of singular systems via orthogonal series. The first two approaches make use of the differentiation operational matrix. The third approach has the advantage that it does not use any system decomposition or state transformation.<>
用正交级数分析奇异系统的状态空间
提出了三种利用正交级数进行奇异系统状态空间分析的新方法。所有三种方法都产生了状态向量系数矩阵的显式表达式,仅涉及小维矩阵的乘法。所有三种方法的优势(计算,结构等)的组合似乎优于所有已知的通过正交序列分析奇异系统的技术的优势。前两种方法利用微分运算矩阵。第三种方法的优点是它不使用任何系统分解或状态转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信