Mixed Guassian and uniform impulse noise analysis using robust estimation for digital images

Jie Xiang Yang, H. Wu
{"title":"Mixed Guassian and uniform impulse noise analysis using robust estimation for digital images","authors":"Jie Xiang Yang, H. Wu","doi":"10.1109/ICDSP.2009.5201092","DOIUrl":null,"url":null,"abstract":"Previous work on mixed Gaussian and impulse noise (MGIN) reduction has impressive quantitative results. However, the estimation of the statistical properties of the MGIN model that varies within a wide range has not been fully investigated. In this paper, statistical properties of the MGIN model are analyzed in detail with a robust estimation. The paper also proposes a two-stage impulse-then-Gaussian filter for MGIN suppression. which makes use of the estimated statistical properties of MGIN. The proposed filtering scheme applies a impulse proportion adaptive median filter (IPAMF) to impulse noise suppression, and a state-of-the-art discrete cosine transform (DCT) domain filter to Gaussian noise reduction. Numerical results, in terms of the peak signal-to-noise ratio (PSNR), and visual samples demonstrate that the proposed filtering scheme achieves better performance of noise reduction than two existing MGIN filtering schemes.","PeriodicalId":409669,"journal":{"name":"2009 16th International Conference on Digital Signal Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 16th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2009.5201092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Previous work on mixed Gaussian and impulse noise (MGIN) reduction has impressive quantitative results. However, the estimation of the statistical properties of the MGIN model that varies within a wide range has not been fully investigated. In this paper, statistical properties of the MGIN model are analyzed in detail with a robust estimation. The paper also proposes a two-stage impulse-then-Gaussian filter for MGIN suppression. which makes use of the estimated statistical properties of MGIN. The proposed filtering scheme applies a impulse proportion adaptive median filter (IPAMF) to impulse noise suppression, and a state-of-the-art discrete cosine transform (DCT) domain filter to Gaussian noise reduction. Numerical results, in terms of the peak signal-to-noise ratio (PSNR), and visual samples demonstrate that the proposed filtering scheme achieves better performance of noise reduction than two existing MGIN filtering schemes.
数字图像的混合高斯和均匀脉冲噪声鲁棒估计分析
先前关于混合高斯和脉冲噪声(MGIN)降低的工作取得了令人印象深刻的定量结果。然而,对MGIN模型在大范围内变化的统计特性的估计尚未得到充分的研究。本文详细分析了MGIN模型的统计特性,并进行了鲁棒估计。本文还提出了一种用于抑制MGIN的两级脉冲-高斯滤波器。它利用了MGIN的估计统计特性。该滤波方案采用脉冲比例自适应中值滤波器(IPAMF)抑制脉冲噪声,采用最先进的离散余弦变换(DCT)域滤波器抑制高斯噪声。在峰值信噪比(PSNR)和视觉样本方面的数值结果表明,该滤波方案比现有的两种MGIN滤波方案具有更好的降噪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信