Graph Laplacian Based Visual Saliency Detection

Dingding Qian, Yuanfeng Zhou, Yu Wei, Caiming Zhang
{"title":"Graph Laplacian Based Visual Saliency Detection","authors":"Dingding Qian, Yuanfeng Zhou, Yu Wei, Caiming Zhang","doi":"10.1109/ICDH.2012.30","DOIUrl":null,"url":null,"abstract":"Detection of salient image regions without prior knowledge of their contents remains a challenge task in computer vision. In this paper, we propose a new saliency detection model based on graph Laplacian computation. This new model has two key steps: firstly, we use an image matting Laplacian model for locating the preliminary visual saliency region. Then, an unsupervised feature selection method in CIELab space is used to improve the accuracy of salient object detection. Experimental results show that the new algorithm can achieve better performance than the existing state of the art.","PeriodicalId":308799,"journal":{"name":"2012 Fourth International Conference on Digital Home","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Digital Home","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDH.2012.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detection of salient image regions without prior knowledge of their contents remains a challenge task in computer vision. In this paper, we propose a new saliency detection model based on graph Laplacian computation. This new model has two key steps: firstly, we use an image matting Laplacian model for locating the preliminary visual saliency region. Then, an unsupervised feature selection method in CIELab space is used to improve the accuracy of salient object detection. Experimental results show that the new algorithm can achieve better performance than the existing state of the art.
基于图拉普拉斯的视觉显著性检测
在不事先知道图像内容的情况下检测显著图像区域仍然是计算机视觉领域的一个挑战。本文提出了一种新的基于图拉普拉斯计算的显著性检测模型。该模型有两个关键步骤:首先,我们使用图像抠图拉普拉斯模型定位初步视觉显著区域;然后,采用CIELab空间的无监督特征选择方法,提高显著目标检测的精度。实验结果表明,新算法能取得比现有算法更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信