Nonconvulsive epileptic seizures detection using multiway data analysis

Yissel Rodríguez Aldana, B. Hunyadi, E. J. M. Reyes, V. Rodriguez, S. Huffel
{"title":"Nonconvulsive epileptic seizures detection using multiway data analysis","authors":"Yissel Rodríguez Aldana, B. Hunyadi, E. J. M. Reyes, V. Rodriguez, S. Huffel","doi":"10.23919/EUSIPCO.2017.8081629","DOIUrl":null,"url":null,"abstract":"Nonconvulsive status epilepticus (NCSE) is observed when the patient undergoes a persistent electroencephalographic epileptic episode without physical symptoms. This condition is commonly found in critically ill patients from intensive care units and constitutes a medical emergency. This paper proposes a method to detect nonconvulsive epileptic seizures (NCES). To perform the NCES detection the electroencephalogram (EEG) is represented as a third order tensor with axes frequency χ time χ channels using Wavelet or Hilbert-Huang transform. The signatures obtained from the tensor decomposition are used to train five classifiers to separate between the normal and seizure EEG. Classification is performed in two ways: (1) with each signature of the different modes separately, (2) with all signatures assembled. The algorithm is tested on a database containing 139 nonconvulsive seizures. From all performed analysis, Hilbert-Huang Tensors Space and assembled signatures demonstrate to be the best features to classify between seizure and non-seizure EEG.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Nonconvulsive status epilepticus (NCSE) is observed when the patient undergoes a persistent electroencephalographic epileptic episode without physical symptoms. This condition is commonly found in critically ill patients from intensive care units and constitutes a medical emergency. This paper proposes a method to detect nonconvulsive epileptic seizures (NCES). To perform the NCES detection the electroencephalogram (EEG) is represented as a third order tensor with axes frequency χ time χ channels using Wavelet or Hilbert-Huang transform. The signatures obtained from the tensor decomposition are used to train five classifiers to separate between the normal and seizure EEG. Classification is performed in two ways: (1) with each signature of the different modes separately, (2) with all signatures assembled. The algorithm is tested on a database containing 139 nonconvulsive seizures. From all performed analysis, Hilbert-Huang Tensors Space and assembled signatures demonstrate to be the best features to classify between seizure and non-seizure EEG.
非惊厥性癫痫发作的多路数据分析检测
非惊厥性癫痫持续状态(NCSE)是指患者经历持续的脑电图癫痫发作而无躯体症状。这种情况常见于重症监护病房的危重病人,构成医疗紧急情况。本文提出一种检测非惊厥性癫痫发作(NCES)的方法。为了进行NCES检测,将脑电图(EEG)用小波变换或Hilbert-Huang变换表示为具有轴频率χ时间χ通道的三阶张量。从张量分解得到的特征被用来训练5个分类器来区分正常和癫痫脑电图。分类分为两种方式:(1)将不同模式的每个签名分别进行分类,(2)将所有签名组合在一起进行分类。该算法在包含139例非惊厥发作的数据库中进行了测试。从所有执行的分析中,Hilbert-Huang张量空间和集合签名被证明是癫痫发作和非癫痫发作脑电图分类的最佳特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信