Prediction model selection for compression of satellite images

E. Korany
{"title":"Prediction model selection for compression of satellite images","authors":"E. Korany","doi":"10.1109/NRSC.1996.551124","DOIUrl":null,"url":null,"abstract":"One major problem of lossless image compression is the lower compression ratio obtained. This is due to the wide spatial bandwidth of image pixel intensities. In this paper we describe an approach for reduction of satellite image spatial bandwidth thus improving the compression ratio. In this approach we code image pixels in a predetermined sequence, predicting each pixel's intensity using a fixed linear combination of a fixed constellation of nearby pixels, then coding the prediction error. Computer experiments have been performed on various satellite images to evaluate the performance of different prediction models on improving the compression ratio.","PeriodicalId":127585,"journal":{"name":"Thirteenth National Radio Science Conference. NRSC '96","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thirteenth National Radio Science Conference. NRSC '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.1996.551124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One major problem of lossless image compression is the lower compression ratio obtained. This is due to the wide spatial bandwidth of image pixel intensities. In this paper we describe an approach for reduction of satellite image spatial bandwidth thus improving the compression ratio. In this approach we code image pixels in a predetermined sequence, predicting each pixel's intensity using a fixed linear combination of a fixed constellation of nearby pixels, then coding the prediction error. Computer experiments have been performed on various satellite images to evaluate the performance of different prediction models on improving the compression ratio.
卫星图像压缩预测模型的选择
图像无损压缩的一个主要问题是压缩比较低。这是由于图像像素强度的空间带宽很宽。本文描述了一种减小卫星图像空间带宽从而提高压缩比的方法。在这种方法中,我们按照预定的顺序对图像像素进行编码,使用固定的附近像素星座的固定线性组合来预测每个像素的强度,然后对预测误差进行编码。在不同的卫星图像上进行了计算机实验,以评估不同的预测模型在提高压缩比方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信