Coupled Hidden Markov Models for Robust EO/IR Target Tracking

J. Gai, Yong Li, R. Stevenson
{"title":"Coupled Hidden Markov Models for Robust EO/IR Target Tracking","authors":"J. Gai, Yong Li, R. Stevenson","doi":"10.1109/ICIP.2007.4378886","DOIUrl":null,"url":null,"abstract":"Augmenting electro-optical (EO) based target tracking systems with infrared (IR) modality has been shown to be effective in increasing the accuracy rate of the tracking system. A key issue in designing such a multimodal tracking system is how to combine information observed from different sensor types in a systematic way to obtain desirable performance. In this paper, we present an investigation into integrating EO and IR sensors within hidden Markov model (HMM) based frameworks. We propose to use a coupled hidden Markov model (CHMM) to improve upon the existing fusion schemes. Another contribution is that we propose to use a robust t-distribution based subspace representation in the CHMM to model appearance changes of the target. Numerical experiments demonstrate that the proposed CHMM tracking system has improved performance over other integration schemes for situations where the target object is corrupted by noise or occlusion.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4378886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Augmenting electro-optical (EO) based target tracking systems with infrared (IR) modality has been shown to be effective in increasing the accuracy rate of the tracking system. A key issue in designing such a multimodal tracking system is how to combine information observed from different sensor types in a systematic way to obtain desirable performance. In this paper, we present an investigation into integrating EO and IR sensors within hidden Markov model (HMM) based frameworks. We propose to use a coupled hidden Markov model (CHMM) to improve upon the existing fusion schemes. Another contribution is that we propose to use a robust t-distribution based subspace representation in the CHMM to model appearance changes of the target. Numerical experiments demonstrate that the proposed CHMM tracking system has improved performance over other integration schemes for situations where the target object is corrupted by noise or occlusion.
鲁棒EO/IR目标跟踪的耦合隐马尔可夫模型
采用红外模式的增强光电目标跟踪系统可以有效地提高跟踪系统的精度。设计这种多模态跟踪系统的一个关键问题是如何将不同类型的传感器观测到的信息系统地结合起来,以获得理想的性能。在本文中,我们提出了一种基于隐马尔可夫模型(HMM)的框架内集成EO和IR传感器的研究。我们提出了一种耦合隐马尔可夫模型(CHMM)来改进现有的融合方案。另一个贡献是我们建议在CHMM中使用基于鲁棒t分布的子空间表示来模拟目标的外观变化。数值实验表明,在目标物体被噪声或遮挡破坏的情况下,所提出的CHMM跟踪系统比其他集成方案具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信