Gearbox

Marzieh Lenjani, A. Ahmed, M. Stan, K. Skadron
{"title":"Gearbox","authors":"Marzieh Lenjani, A. Ahmed, M. Stan, K. Skadron","doi":"10.1145/3470496.3527402","DOIUrl":null,"url":null,"abstract":"Processing-in-memory (PIM) minimizes data movement overheads by placing processing units near each memory segment. Recent PIMs employ processing units with a SIMD architecture. However, kernels with random accesses, such as sparse-matrix-dense-vector (SpMV) and sparse-matrix-sparse-vector (SpMSpV), cannot effectively exploit the parallelism of SIMD units because SIMD's ALUs remain idle until all the operands are collected from local memory segments (memory segment attached to the processing unit) or remote memory segments (other segments of the memory). For SpMV and SpMSpV, properly partitioning the matrix and the vector among the memory segments is also very important. Partitioning determines (i) how much processing load will be assigned to each processing unit and (ii) how much communication is required among the processing units. In this paper, first, we propose a highly parallel architecture that can exploit the available parallelism even in the presence of random accesses. Second, we observed that, in SpMV and SpMSpV, most of the remote accesses become remote accumulations with the right choice of algorithm and partitioning. The remote accumulations could be offloaded to be performed by processing units next to the destination memory segments, eliminating idle time due to remote accesses. Accordingly, we introduce a dispatching mechanism for remote accumulation offloading. Third, we propose Hybrid partitioning and associated hardware support. Our partitioning technique enables (i) replacing remote read accesses with broadcasting (for only a small portion of data that will be read by all processing units), (ii) reducing the number of remote accumulations, and (iii) balancing the load. Our proposed method, Gearbox, with just one memory stack, delivers on average (up to) 15.73X (52X) speedup over a server-class GPU, NVIDIA P100, with three stacks of HBM2 memory.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Processing-in-memory (PIM) minimizes data movement overheads by placing processing units near each memory segment. Recent PIMs employ processing units with a SIMD architecture. However, kernels with random accesses, such as sparse-matrix-dense-vector (SpMV) and sparse-matrix-sparse-vector (SpMSpV), cannot effectively exploit the parallelism of SIMD units because SIMD's ALUs remain idle until all the operands are collected from local memory segments (memory segment attached to the processing unit) or remote memory segments (other segments of the memory). For SpMV and SpMSpV, properly partitioning the matrix and the vector among the memory segments is also very important. Partitioning determines (i) how much processing load will be assigned to each processing unit and (ii) how much communication is required among the processing units. In this paper, first, we propose a highly parallel architecture that can exploit the available parallelism even in the presence of random accesses. Second, we observed that, in SpMV and SpMSpV, most of the remote accesses become remote accumulations with the right choice of algorithm and partitioning. The remote accumulations could be offloaded to be performed by processing units next to the destination memory segments, eliminating idle time due to remote accesses. Accordingly, we introduce a dispatching mechanism for remote accumulation offloading. Third, we propose Hybrid partitioning and associated hardware support. Our partitioning technique enables (i) replacing remote read accesses with broadcasting (for only a small portion of data that will be read by all processing units), (ii) reducing the number of remote accumulations, and (iii) balancing the load. Our proposed method, Gearbox, with just one memory stack, delivers on average (up to) 15.73X (52X) speedup over a server-class GPU, NVIDIA P100, with three stacks of HBM2 memory.
齿轮箱
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信