{"title":"Speedup Clustering with Hierarchical Ranking","authors":"Jianjun Zhou, J. Sander","doi":"10.1109/ICDM.2006.151","DOIUrl":null,"url":null,"abstract":"Many clustering algorithms in particular hierarchical clustering algorithms do not scale-up well for large data-sets especially when using an expensive distance function. In this paper, we propose a novel approach to perform approximate clustering with high accuracy. We introduce the concept of a pairwise hierarchical ranking to efficiently determine close neighbors for every data object. Empirical results on synthetic and real-life data show a speedup of up to two orders of magnitude over OPTICS while maintaining a high accuracy and up to one order of magnitude over the previously proposed DATA BUBBLES method, which also tries to speedup OPTICS by trading accuracy for speed.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Many clustering algorithms in particular hierarchical clustering algorithms do not scale-up well for large data-sets especially when using an expensive distance function. In this paper, we propose a novel approach to perform approximate clustering with high accuracy. We introduce the concept of a pairwise hierarchical ranking to efficiently determine close neighbors for every data object. Empirical results on synthetic and real-life data show a speedup of up to two orders of magnitude over OPTICS while maintaining a high accuracy and up to one order of magnitude over the previously proposed DATA BUBBLES method, which also tries to speedup OPTICS by trading accuracy for speed.