BReW: Blackbox resource selection for e-Science workflows

Yogesh L. Simmhan, Emad Soroush, C. Ingen, Deb Agarwal, L. Ramakrishnan
{"title":"BReW: Blackbox resource selection for e-Science workflows","authors":"Yogesh L. Simmhan, Emad Soroush, C. Ingen, Deb Agarwal, L. Ramakrishnan","doi":"10.1109/WORKS.2010.5671857","DOIUrl":null,"url":null,"abstract":"Workflows are commonly used to model data intensive scientific analysis. As computational resource needs increase for eScience, emerging platforms like clouds present additional resource choices for scientists and policy makers. We introduce BReW, a tool enables users to make rapid, highlevel platform selection for their workflows using limited workflow knowledge. This helps make informed decisions on whether to port a workflow to a new platform. Our analysis of synthetic and real eScience workflows shows that using just total runtime length, maximum task fanout, and total data used and produced by the workflow, BReW can provide platform predictions comparable to whitebox models with detailed workflow knowledge.","PeriodicalId":400999,"journal":{"name":"The 5th Workshop on Workflows in Support of Large-Scale Science","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 5th Workshop on Workflows in Support of Large-Scale Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WORKS.2010.5671857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Workflows are commonly used to model data intensive scientific analysis. As computational resource needs increase for eScience, emerging platforms like clouds present additional resource choices for scientists and policy makers. We introduce BReW, a tool enables users to make rapid, highlevel platform selection for their workflows using limited workflow knowledge. This helps make informed decisions on whether to port a workflow to a new platform. Our analysis of synthetic and real eScience workflows shows that using just total runtime length, maximum task fanout, and total data used and produced by the workflow, BReW can provide platform predictions comparable to whitebox models with detailed workflow knowledge.
BReW:电子科学工作流的黑盒资源选择
工作流通常用于为数据密集型科学分析建模。随着eScience对计算资源需求的增加,云等新兴平台为科学家和决策者提供了额外的资源选择。我们介绍BReW,这个工具使用户能够使用有限的工作流知识为他们的工作流做出快速、高级的平台选择。这有助于就是否将工作流移植到新平台做出明智的决定。我们对合成和真实eScience工作流的分析表明,仅使用总运行时间长度、最大任务扇出和工作流使用和产生的总数据,BReW就可以提供与具有详细工作流知识的白盒模型相当的平台预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信