Relative shape context based on multiscale edge features for disaster remote sensing image registration

Shumei Zhang, Jie Jiang, S. Cao
{"title":"Relative shape context based on multiscale edge features for disaster remote sensing image registration","authors":"Shumei Zhang, Jie Jiang, S. Cao","doi":"10.1109/ICICIP.2012.6391540","DOIUrl":null,"url":null,"abstract":"When disasters occur, image local gradients change significantly, whereas global shapes and structures remain relatively stable. Considering the low matching positive ratio in original SIFT, this paper propose a novel registration algorithm using Relative Shape Context (RSC) based on multiscale edge features. Firstly, edge features of global shapes and structures are extracted. Then an equivalent difference of Gaussian (DOG) space is used to detect local scale invariant features of multiscale edge images. Finally, RSC is performed as feature descriptor to find matching points. Experimental results show that the new algorithm is suitable for multiscale images and is invariant to a range of rotation angle changes. The distinctive novel algorithm owns much higher matching accuracy and is more stable than original SIFT.","PeriodicalId":376265,"journal":{"name":"2012 Third International Conference on Intelligent Control and Information Processing","volume":"325 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2012.6391540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

When disasters occur, image local gradients change significantly, whereas global shapes and structures remain relatively stable. Considering the low matching positive ratio in original SIFT, this paper propose a novel registration algorithm using Relative Shape Context (RSC) based on multiscale edge features. Firstly, edge features of global shapes and structures are extracted. Then an equivalent difference of Gaussian (DOG) space is used to detect local scale invariant features of multiscale edge images. Finally, RSC is performed as feature descriptor to find matching points. Experimental results show that the new algorithm is suitable for multiscale images and is invariant to a range of rotation angle changes. The distinctive novel algorithm owns much higher matching accuracy and is more stable than original SIFT.
基于多尺度边缘特征的相对形状上下文灾害遥感图像配准
灾害发生时,图像局部梯度变化显著,而全局形状和结构保持相对稳定。针对原有SIFT匹配阳性率较低的问题,提出了一种基于多尺度边缘特征的相对形状上下文(RSC)配准算法。首先,提取全局形状和结构的边缘特征;然后利用等效高斯差分(DOG)空间检测多尺度边缘图像的局部尺度不变性特征;最后,将RSC作为特征描述符来寻找匹配点。实验结果表明,该算法适用于多尺度图像,且对一定范围的旋转角度变化具有不变性。与原有的SIFT相比,该算法具有更高的匹配精度和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信