Information Leakage Analysis of Inner-Product Functional Encryption Based Data Classification

D. Ligier, Sergiu Carpov, C. Fontaine, Renaud Sirdey
{"title":"Information Leakage Analysis of Inner-Product Functional Encryption Based Data Classification","authors":"D. Ligier, Sergiu Carpov, C. Fontaine, Renaud Sirdey","doi":"10.1109/PST.2017.00043","DOIUrl":null,"url":null,"abstract":"In this work, we study the practical security of innerproduct functional encryption. We left behind the mathematical security proof of the schemes, provided in the literature, and focus on what attackers can use in realistic scenarios without tricking the protocol, and how they can retrieve more than they should be able to. This study is based on the proposed protocol from [1]. We generalize the scenario to an attacker possessing n secret keys. We propose attacks based on machine learning, and experiment them over the MNIST dataset [2].","PeriodicalId":405887,"journal":{"name":"2017 15th Annual Conference on Privacy, Security and Trust (PST)","volume":"298 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th Annual Conference on Privacy, Security and Trust (PST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PST.2017.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this work, we study the practical security of innerproduct functional encryption. We left behind the mathematical security proof of the schemes, provided in the literature, and focus on what attackers can use in realistic scenarios without tricking the protocol, and how they can retrieve more than they should be able to. This study is based on the proposed protocol from [1]. We generalize the scenario to an attacker possessing n secret keys. We propose attacks based on machine learning, and experiment them over the MNIST dataset [2].
基于内积函数加密的数据分类信息泄露分析
在这项工作中,我们研究了内积函数加密的实际安全性。我们不考虑文献中提供的方案的数学安全性证明,而是关注攻击者在不欺骗协议的情况下可以在现实场景中使用什么,以及他们如何能够获得比他们应该能够获得的更多的信息。本研究基于[1]提出的方案。我们将该场景概括为拥有n个秘钥的攻击者。我们提出了基于机器学习的攻击,并在MNIST数据集上进行了实验[2]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信