TinyTricia – A Space-Optimized Patricia Trie For Transparent Access to Edge Computing Services

Josef Hammer, H. Hellwagner
{"title":"TinyTricia – A Space-Optimized Patricia Trie For Transparent Access to Edge Computing Services","authors":"Josef Hammer, H. Hellwagner","doi":"10.1109/UCC56403.2022.00060","DOIUrl":null,"url":null,"abstract":"Multi-access Edge Computing (MEC) is an essential piece of 5G telecommunication systems to satisfy the challenging low-latency demands of future applications. Our previous publications argue that edge computing should be transparent to clients. We introduced an efficient solution to implement such a transparent approach, leveraging Software-Defined Networking and virtual IP+port addresses for registered edge services. A core component of our architecture is a Patricia Trie, which stores all our virtual IP+port addresses. Unfortunately, most implementations of Patricia Tries are not geared toward use cases with millions of keys where a low memory footprint becomes essential. In this paper, we present TinyTric$\\dot{w}$, a space-efficient open-source implementation of a Patricia Trie for keys up to 256 bits. TinyTricia can keep track of up to half a billion (229) keys $\\leq$57 bits and up to a quarter of a billion (228-1) keys $\\leq$256 bits with tiny memory requirements. In the latter case, each key can have a data value of any type. Keys $\\leq$57 bits require only 8 to 16 bytes per key (i.e., only 0 to 8 bytes overhead per 57-bit key); for keys $\\geq$58 bits, add the key size (in whole bytes) to these values. Thus, for 16.78 million (224)57-bit keys, our solution requires between 128 and 256 MiB of memory. Unlike some other spaceefficient implementations, TinyTriia allows adding and removing keys at runtime.","PeriodicalId":203244,"journal":{"name":"2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC56403.2022.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Multi-access Edge Computing (MEC) is an essential piece of 5G telecommunication systems to satisfy the challenging low-latency demands of future applications. Our previous publications argue that edge computing should be transparent to clients. We introduced an efficient solution to implement such a transparent approach, leveraging Software-Defined Networking and virtual IP+port addresses for registered edge services. A core component of our architecture is a Patricia Trie, which stores all our virtual IP+port addresses. Unfortunately, most implementations of Patricia Tries are not geared toward use cases with millions of keys where a low memory footprint becomes essential. In this paper, we present TinyTric$\dot{w}$, a space-efficient open-source implementation of a Patricia Trie for keys up to 256 bits. TinyTricia can keep track of up to half a billion (229) keys $\leq$57 bits and up to a quarter of a billion (228-1) keys $\leq$256 bits with tiny memory requirements. In the latter case, each key can have a data value of any type. Keys $\leq$57 bits require only 8 to 16 bytes per key (i.e., only 0 to 8 bytes overhead per 57-bit key); for keys $\geq$58 bits, add the key size (in whole bytes) to these values. Thus, for 16.78 million (224)57-bit keys, our solution requires between 128 and 256 MiB of memory. Unlike some other spaceefficient implementations, TinyTriia allows adding and removing keys at runtime.
TinyTricia -一个空间优化的Patricia Trie,用于透明访问边缘计算服务
多接入边缘计算(MEC)是5G电信系统的重要组成部分,可以满足未来应用中具有挑战性的低延迟需求。我们之前的出版物认为边缘计算应该对客户透明。我们引入了一种高效的解决方案来实现这种透明的方法,利用软件定义网络和虚拟IP+端口地址来注册边缘服务。我们架构的核心组件是Patricia Trie,它存储了我们所有的虚拟IP+端口地址。不幸的是,Patricia Tries的大多数实现都不适合具有数百万个键的用例,在这些用例中,低内存占用是必不可少的。在本文中,我们介绍了TinyTric $\dot{w}$,这是一个空间高效的Patricia Trie的开源实现,用于高达256位的密钥。TinyTricia可以跟踪多达5亿(229)个密钥$\leq$ 57位,最多25亿(228-1)个密钥$\leq$ 256位,内存要求很小。在后一种情况下,每个键可以有任何类型的数据值。密钥$\leq$ 57位每个密钥只需要8到16个字节(即每个57位密钥只需要0到8个字节的开销);对于密钥$\geq$ 58位,将密钥大小(以整个字节为单位)添加到这些值中。因此,对于1678万(224)个57位密钥,我们的解决方案需要128到256 MiB的内存。与其他一些节省空间的实现不同,TinyTriia允许在运行时添加和删除键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信