RF-Based Machine Learning Solution for Indoor Person Detection

Pedro Maia De Santana, Thiago A. Scher, J. Bazzo, Álvaro Augusto M. de Medeiros, V. Sousa
{"title":"RF-Based Machine Learning Solution for Indoor Person Detection","authors":"Pedro Maia De Santana, Thiago A. Scher, J. Bazzo, Álvaro Augusto M. de Medeiros, V. Sousa","doi":"10.4018/IJITN.2021040104","DOIUrl":null,"url":null,"abstract":"Machine learning techniques applied to radio frequency (RF) signals are used for many applications in addition to data communication. In this paper, the authors propose a machine learning solution for classifying the number of people within an indoor ambient. The main idea is to identify a pattern of received signal characteristics according to the number of people. Experimental measurements are performed using a software-defined radio platform inside a laboratory. The data collected is post-processed by applying a feature mapping technique based on mean, standard deviation, and Shannon information entropy. This feature-space data is then used to train a supervised machine learning network for classifying scenarios with zero, one, two, and three people inside. The proposed solution presents significant accuracy in classification performance.","PeriodicalId":120331,"journal":{"name":"Int. J. Interdiscip. Telecommun. Netw.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Interdiscip. Telecommun. Netw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJITN.2021040104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Machine learning techniques applied to radio frequency (RF) signals are used for many applications in addition to data communication. In this paper, the authors propose a machine learning solution for classifying the number of people within an indoor ambient. The main idea is to identify a pattern of received signal characteristics according to the number of people. Experimental measurements are performed using a software-defined radio platform inside a laboratory. The data collected is post-processed by applying a feature mapping technique based on mean, standard deviation, and Shannon information entropy. This feature-space data is then used to train a supervised machine learning network for classifying scenarios with zero, one, two, and three people inside. The proposed solution presents significant accuracy in classification performance.
基于射频的室内人检测机器学习解决方案
除了数据通信之外,应用于射频(RF)信号的机器学习技术还用于许多应用。在本文中,作者提出了一种机器学习解决方案,用于对室内环境中的人数进行分类。其主要思想是根据人数确定接收信号特征的模式。实验测量使用实验室内的软件定义无线电平台进行。采用基于均值、标准差和香农信息熵的特征映射技术对采集到的数据进行后处理。然后,这些特征空间数据被用来训练一个有监督的机器学习网络,用于对室内有0人、1人、2人和3人的场景进行分类。该方法在分类性能上具有显著的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信