Hybrid Activation Function in Deep Learning for Gait Analysis

P. Privietha, V. Raj
{"title":"Hybrid Activation Function in Deep Learning for Gait Analysis","authors":"P. Privietha, V. Raj","doi":"10.1109/PECCON55017.2022.9851128","DOIUrl":null,"url":null,"abstract":"Various values are carried out in Neural Network Connections, to check whether the neurons are activated equally or not and the activation layer is called to conduct the process statistically balanced. Mathematical functions like ReLU, softmax and sparsemax are used in Activation Layer. In this paper the investigator combined softmax and sparsemax in the last activation layer of the Deep Learning Convolutional Neural Network for gait analysis using silhouettes. Human identification process is done without the conscious of the person. The researcher used gait features to predict the person. Python Language that runs over tensorflow is used to implement the functions in activation layer. Benchmarking dataset CASIA Band C is used for better performance. The combined hybrid formula is implemented in the last activation layer along with probability calculation. The results reveals that the hybrid usage of both softmax and sparsemax function in the activation layer helps in better performance and provides high accuracy while comparing the individual usage of functions separately.","PeriodicalId":129147,"journal":{"name":"2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECCON55017.2022.9851128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Various values are carried out in Neural Network Connections, to check whether the neurons are activated equally or not and the activation layer is called to conduct the process statistically balanced. Mathematical functions like ReLU, softmax and sparsemax are used in Activation Layer. In this paper the investigator combined softmax and sparsemax in the last activation layer of the Deep Learning Convolutional Neural Network for gait analysis using silhouettes. Human identification process is done without the conscious of the person. The researcher used gait features to predict the person. Python Language that runs over tensorflow is used to implement the functions in activation layer. Benchmarking dataset CASIA Band C is used for better performance. The combined hybrid formula is implemented in the last activation layer along with probability calculation. The results reveals that the hybrid usage of both softmax and sparsemax function in the activation layer helps in better performance and provides high accuracy while comparing the individual usage of functions separately.
步态分析深度学习中的混合激活函数
在Neural Network Connections中执行各种值,以检查神经元是否均匀激活,并调用激活层进行统计平衡。激活层中使用了ReLU、softmax和sparsemax等数学函数。在本文中,研究者将softmax和sparsemax结合在深度学习卷积神经网络的最后一个激活层中,用于使用轮廓进行步态分析。人的身份识别过程是在没有意识的情况下完成的。研究人员利用步态特征来预测这个人。激活层的函数使用运行在tensorflow上的Python语言来实现。使用基准测试数据集CASIA波段C以获得更好的性能。在最后一激活层实现组合混合公式,并进行概率计算。结果表明,在激活层中混合使用softmax和sparsemax函数有助于提高性能,并且在单独比较函数的单独使用时提供了较高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信