{"title":"K-DBSCAN: an efficient density-based clustering algorithm supports parallel computing","authors":"Chao Deng, Jinwei Song, Saihua Cai, Ruizhi Sun, Yinxue Shi, Shangbo Hao","doi":"10.1504/IJSPM.2018.094740","DOIUrl":null,"url":null,"abstract":"DBSCAN is the most representative density-based clustering algorithm and has been widely used in many fields. However, the running time of DBSCAN is unacceptable in many actual applications. To improve its performance, this paper presents a new 2D density-based clustering algorithm, K-DBSCAN, which successfully reduces the computational complexity of the clustering process by a simplified k-mean partitioning process and a reachable partition index, and enables parallel computing by a divide-and-conquer method. The experiments show that K-DBSCAN achieves remarkable accuracy, efficiency and applicability compared with conventional DBSCAN algorithms especially in large-scale spatial density-based clustering. The time complexity of K-DBSCAN is O(N2/KC), where K is the number of data partitions, and C is the number of physical computing cores.","PeriodicalId":266151,"journal":{"name":"Int. J. Simul. Process. Model.","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Simul. Process. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSPM.2018.094740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
DBSCAN is the most representative density-based clustering algorithm and has been widely used in many fields. However, the running time of DBSCAN is unacceptable in many actual applications. To improve its performance, this paper presents a new 2D density-based clustering algorithm, K-DBSCAN, which successfully reduces the computational complexity of the clustering process by a simplified k-mean partitioning process and a reachable partition index, and enables parallel computing by a divide-and-conquer method. The experiments show that K-DBSCAN achieves remarkable accuracy, efficiency and applicability compared with conventional DBSCAN algorithms especially in large-scale spatial density-based clustering. The time complexity of K-DBSCAN is O(N2/KC), where K is the number of data partitions, and C is the number of physical computing cores.