{"title":"Virtual Power Limiter System which Guarantees Stability of Control Systems","authors":"K. Kanaoka, M. Uemura","doi":"10.1109/ROBOT.2005.1570308","DOIUrl":null,"url":null,"abstract":"In this paper, a Virtual Power Limiter System is proposed. This requires no modeling and makes it possible to guarantee the stability of control systems which include unknown characteristics: flexibility in flexible manipulators, compressibility in pneumatic servo systems, human dynamics in man-machine systems, hardware nonlinearity in mechatronic systems, and so on. The details of the proposed virtual power limiter system and experimental verification with a man-machine system are presented.","PeriodicalId":350878,"journal":{"name":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2005.1570308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper, a Virtual Power Limiter System is proposed. This requires no modeling and makes it possible to guarantee the stability of control systems which include unknown characteristics: flexibility in flexible manipulators, compressibility in pneumatic servo systems, human dynamics in man-machine systems, hardware nonlinearity in mechatronic systems, and so on. The details of the proposed virtual power limiter system and experimental verification with a man-machine system are presented.