A Depth-Five Lower Bound for Iterated Matrix Multiplication

S. Bera, Amit Chakrabarti
{"title":"A Depth-Five Lower Bound for Iterated Matrix Multiplication","authors":"S. Bera, Amit Chakrabarti","doi":"10.4230/LIPIcs.CCC.2015.183","DOIUrl":null,"url":null,"abstract":"We prove that certain instances of the iterated matrix multiplication (IMM) family of polynomials with N variables and degree n require [EQUATION] gates when expressed as a homogeneous depth-five ΣΠΣΠΣ arithmetic circuit with the bottom fan-in bounded by N1/2-e. By a depth-reduction result of Tavenas, this size lower bound is optimal and can be achieved by the weaker class of homogeneous depth-four ΣΠΣΠ circuits.Our result extends a recent result of Kumar and Saraf, who gave the same [EQUATION] lower bound for homogeneous depth-four ΣΠΣΠ circuits computing IMM. It is analogous to a recent result of Kayal and Saha, who gave the same lower bound for homogeneous ΣΠΣΠΣ circuits (over characteristic zero) with bottom fan-in at most N1-e, for the harder problem of computing certain polynomials defined by Nisan--Wigderson designs.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2015.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We prove that certain instances of the iterated matrix multiplication (IMM) family of polynomials with N variables and degree n require [EQUATION] gates when expressed as a homogeneous depth-five ΣΠΣΠΣ arithmetic circuit with the bottom fan-in bounded by N1/2-e. By a depth-reduction result of Tavenas, this size lower bound is optimal and can be achieved by the weaker class of homogeneous depth-four ΣΠΣΠ circuits.Our result extends a recent result of Kumar and Saraf, who gave the same [EQUATION] lower bound for homogeneous depth-four ΣΠΣΠ circuits computing IMM. It is analogous to a recent result of Kayal and Saha, who gave the same lower bound for homogeneous ΣΠΣΠΣ circuits (over characteristic zero) with bottom fan-in at most N1-e, for the harder problem of computing certain polynomials defined by Nisan--Wigderson designs.
迭代矩阵乘法的深度五下界
我们证明了具有N个变量和N次多项式的迭代矩阵乘法(IMM)族的某些实例在表示为底部扇区为N1/2-e的齐次深度五ΣΠΣΠΣ算术电路时需要[EQUATION]门。根据Tavenas的深度约简结果,该尺寸下界是最优的,可以通过较弱的齐次深度四ΣΠΣΠ电路类来实现。我们的结果扩展了Kumar和Saraf最近的结果,他们给出了计算IMM的齐次深度四ΣΠΣΠ电路的相同[方程]下界。它类似于Kayal和Saha最近的一个结果,他们给出了相同的下界,对于底部扇入最多N1-e的齐次ΣΠΣΠΣ电路(超过特征零),计算由Nisan- Wigderson设计定义的某些多项式的更难的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信