Hybridization of Wavelet Decomposition and Machine Learning for Brain Waves based Emotion Recognition

Mirna Ali, S. Qaisar, Tamanna Anurulafchar
{"title":"Hybridization of Wavelet Decomposition and Machine Learning for Brain Waves based Emotion Recognition","authors":"Mirna Ali, S. Qaisar, Tamanna Anurulafchar","doi":"10.1109/ICAISC56366.2023.10085288","DOIUrl":null,"url":null,"abstract":"Emotion recognition has sparked the interest of researchers from a variety of disciplines. Studies have demonstrated that brain signals may be utilized to characterize a wide range of emotional states. Electroencephalogram (EEG) measures the cerebral activity. Therefore, by exploiting the EEG signals the emotion states can be determined. In this study the EEG signals undergoes through filtering, segmentation, Wavelet Packet Decomposition (WPD), feature mining, and classification. The machine learning algorithms used for classifications are “Decision Tree” (DT), “Support Vector Machine” (SVM), and K-Nearest Neighbor” (K-NN) algorithms are used for categorization. Their performance is compared for automatically identifying the emotion state. It is determined that the best performer is SVM. It has attained 98.2% accuracy, 97.3% precision, 97.3% recall, 98.7% specificity, 97.3% F1, 97.3% kappa, and 99.3% AUC.","PeriodicalId":422888,"journal":{"name":"2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAISC56366.2023.10085288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Emotion recognition has sparked the interest of researchers from a variety of disciplines. Studies have demonstrated that brain signals may be utilized to characterize a wide range of emotional states. Electroencephalogram (EEG) measures the cerebral activity. Therefore, by exploiting the EEG signals the emotion states can be determined. In this study the EEG signals undergoes through filtering, segmentation, Wavelet Packet Decomposition (WPD), feature mining, and classification. The machine learning algorithms used for classifications are “Decision Tree” (DT), “Support Vector Machine” (SVM), and K-Nearest Neighbor” (K-NN) algorithms are used for categorization. Their performance is compared for automatically identifying the emotion state. It is determined that the best performer is SVM. It has attained 98.2% accuracy, 97.3% precision, 97.3% recall, 98.7% specificity, 97.3% F1, 97.3% kappa, and 99.3% AUC.
基于小波分解和机器学习的脑电波情感识别
情绪识别已经引起了各个学科研究者的兴趣。研究表明,大脑信号可以用来描述各种各样的情绪状态。脑电图(EEG)测量大脑活动。因此,利用脑电图信号可以确定情绪状态。本研究对脑电信号进行滤波、分割、小波包分解、特征挖掘和分类。用于分类的机器学习算法是“决策树”(DT),“支持向量机”(SVM),分类使用k -最近邻(K-NN)算法。通过比较他们的表现来自动识别情绪状态。结果表明,支持向量机的性能最好。准确率为98.2%,精密度为97.3%,召回率为97.3%,特异性为98.7%,F1为97.3%,kappa为97.3%,AUC为99.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信