Transfer learning for Diabetic Macular Edema (DME) detection on Optical Coherence Tomography (OCT) images

G. Chan, M. Awais, S. A. A. Shah, T. Tang, Cheng-Kai Lu, F. Mériaudeau
{"title":"Transfer learning for Diabetic Macular Edema (DME) detection on Optical Coherence Tomography (OCT) images","authors":"G. Chan, M. Awais, S. A. A. Shah, T. Tang, Cheng-Kai Lu, F. Mériaudeau","doi":"10.1109/ICSIPA.2017.8120662","DOIUrl":null,"url":null,"abstract":"Diabetic Macular Edema (DME) is a common eye disease that causes irreversible vision loss for diabetic patients, if left untreated. Thus, early diagnosis of DME could help in early treatment and prevent blindness. This paper aims to create a framework based on deep learning for DME recognition on Spectral Domain Optical Coherence Tomography (SD-OCT) images through transfer learning. First, images are pre-processed: denoised using Block-Matching and 3-Dimension (BM3D) filtering and cropped through image boundary extraction. Later, features are extracted using CNN of AlexNet and finally images are classified using SVM classifier. The results are evaluated using 8-fold cross-validation. The experiments show that denoised and cropped images lead to better classification performances, exceeding previous other recent published works of 96% accuracy.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Diabetic Macular Edema (DME) is a common eye disease that causes irreversible vision loss for diabetic patients, if left untreated. Thus, early diagnosis of DME could help in early treatment and prevent blindness. This paper aims to create a framework based on deep learning for DME recognition on Spectral Domain Optical Coherence Tomography (SD-OCT) images through transfer learning. First, images are pre-processed: denoised using Block-Matching and 3-Dimension (BM3D) filtering and cropped through image boundary extraction. Later, features are extracted using CNN of AlexNet and finally images are classified using SVM classifier. The results are evaluated using 8-fold cross-validation. The experiments show that denoised and cropped images lead to better classification performances, exceeding previous other recent published works of 96% accuracy.
光学相干断层扫描(OCT)图像上糖尿病黄斑水肿(DME)检测的迁移学习
糖尿病性黄斑水肿(DME)是一种常见的眼病,如果不及时治疗,会导致糖尿病患者不可逆的视力丧失。因此,DME的早期诊断有助于早期治疗和预防失明。本文旨在通过迁移学习,建立一个基于深度学习的框架,用于谱域光学相干断层扫描(SD-OCT)图像的DME识别。首先,对图像进行预处理:使用块匹配和三维(BM3D)滤波去噪,通过图像边界提取裁剪。然后使用AlexNet的CNN提取特征,最后使用SVM分类器对图像进行分类。使用8倍交叉验证对结果进行评估。实验表明,去噪和裁剪后的图像具有更好的分类性能,超过了最近发表的其他96%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信