The FeasNewt benchmark

T. Munson, P. Hovland
{"title":"The FeasNewt benchmark","authors":"T. Munson, P. Hovland","doi":"10.1109/IISWC.2005.1526011","DOIUrl":null,"url":null,"abstract":"We describe the FeasNewt mesh-quality optimization benchmark. The performance of the code is dominated by three phases - gradient evaluation, Hessian evaluation and assembly, and sparse matrix-vector products - that have very different mixtures of floating-point operations and memory access patterns. The code includes an optional runtime data- and iteration-reordering phase, making it suitable for research on irregular memory access patterns. Mesh-quality optimization (or \"mesh smoothing\") is an important ingredient in the solution of nonlinear partial differential equations (PDEs) as well as an excellent surrogate for finite-element or finite-volume PDE solvers.","PeriodicalId":275514,"journal":{"name":"IEEE International. 2005 Proceedings of the IEEE Workload Characterization Symposium, 2005.","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International. 2005 Proceedings of the IEEE Workload Characterization Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC.2005.1526011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We describe the FeasNewt mesh-quality optimization benchmark. The performance of the code is dominated by three phases - gradient evaluation, Hessian evaluation and assembly, and sparse matrix-vector products - that have very different mixtures of floating-point operations and memory access patterns. The code includes an optional runtime data- and iteration-reordering phase, making it suitable for research on irregular memory access patterns. Mesh-quality optimization (or "mesh smoothing") is an important ingredient in the solution of nonlinear partial differential equations (PDEs) as well as an excellent surrogate for finite-element or finite-volume PDE solvers.
FeasNewt基准
我们描述了FeasNewt网格质量优化基准。代码的性能主要由三个阶段控制——梯度求值、Hessian求值和汇编,以及稀疏矩阵向量积——这三个阶段有非常不同的浮点操作和内存访问模式的混合。该代码包括一个可选的运行时数据和迭代重新排序阶段,使其适合于研究不规则的内存访问模式。网格质量优化(或“网格平滑”)是求解非线性偏微分方程(PDEs)的一个重要组成部分,也是有限元或有限体积偏微分方程求解的一个很好的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信