Mohamed Ibrahim, Aditya Sridhar, K. Chakrabarty, Ulf Schlichtmann
{"title":"Sortex: Efficient timing-driven synthesis of reconfigurable flow-based biochips for scalable single-cell screening","authors":"Mohamed Ibrahim, Aditya Sridhar, K. Chakrabarty, Ulf Schlichtmann","doi":"10.1109/ICCAD.2017.8203835","DOIUrl":null,"url":null,"abstract":"Single-cell screening is used to sort a stream of cells into clusters (or types) based on pre-specified biomarkers, thus supporting type-driven biochemical analysis. Reconfigurable flow-based microfluidic biochips (RFBs) can be utilized to screen hundreds of heterogeneous cells within a few minutes, but they are overburdened with the control of a large number of valves. To address this problem, we present a pin-constrained RFB design methodology for single-cell screening. The proposed design is analyzed using computational fluid dynamics simulations, mapped to an RC-lumped model, and combined with a high-level synthesis framework, referred to as Sortex. Simulation results show that Sortex significantly reduces the number of control pins and fulfills the timing requirements of single-cell screening.","PeriodicalId":126686,"journal":{"name":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Single-cell screening is used to sort a stream of cells into clusters (or types) based on pre-specified biomarkers, thus supporting type-driven biochemical analysis. Reconfigurable flow-based microfluidic biochips (RFBs) can be utilized to screen hundreds of heterogeneous cells within a few minutes, but they are overburdened with the control of a large number of valves. To address this problem, we present a pin-constrained RFB design methodology for single-cell screening. The proposed design is analyzed using computational fluid dynamics simulations, mapped to an RC-lumped model, and combined with a high-level synthesis framework, referred to as Sortex. Simulation results show that Sortex significantly reduces the number of control pins and fulfills the timing requirements of single-cell screening.