Distribution Laws of Small Size Samples. Metrological Implementation

R. Florescu, N. Thirer
{"title":"Distribution Laws of Small Size Samples. Metrological Implementation","authors":"R. Florescu, N. Thirer","doi":"10.1109/EEEI.2006.321099","DOIUrl":null,"url":null,"abstract":"In this paper is exposed an original technique to determine the empirical probability density function (pdf) and the empirical cumulative distribution function (cdf) and to estimate moments of any order, for a small size random sample (m=3 - 10) of a continuous random variable (rv). The efficiency of the proposed method is checked up by applying the Kolmogorov-Smirnov test to several series of pseudorandom numbers heaving known distribution laws. In the last part of the paper are presented the advantages of our method for distribution determination in metrological measurements, specially for destructive or expensive measurements.","PeriodicalId":142814,"journal":{"name":"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEI.2006.321099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper is exposed an original technique to determine the empirical probability density function (pdf) and the empirical cumulative distribution function (cdf) and to estimate moments of any order, for a small size random sample (m=3 - 10) of a continuous random variable (rv). The efficiency of the proposed method is checked up by applying the Kolmogorov-Smirnov test to several series of pseudorandom numbers heaving known distribution laws. In the last part of the paper are presented the advantages of our method for distribution determination in metrological measurements, specially for destructive or expensive measurements.
小样本分布规律。计量的实现
本文揭示了一种确定连续随机变量(rv)的小样本(m=3 - 10)的经验概率密度函数(pdf)和经验累积分布函数(cdf)以及估计任意阶矩的原始技术。通过对若干已知分布规律的伪随机数序列进行Kolmogorov-Smirnov检验,验证了该方法的有效性。最后介绍了该方法在计量测量中,特别是在破坏性或昂贵的测量中分布确定的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信