Semismooth equation approach to Network Utility Maximization (NUM)

Lijie Bai, A. Raghunathan
{"title":"Semismooth equation approach to Network Utility Maximization (NUM)","authors":"Lijie Bai, A. Raghunathan","doi":"10.1109/ACC.2013.6580580","DOIUrl":null,"url":null,"abstract":"Popular approach to solving NUM utilizes dual decomposition and subgradient iterations, which are extremely slow to converge. Recently there has been investigation of barrier methods for the solution of NUM which have been shown to posess second order convergence. However, the question of accelerating dual decomposition based methods is still open. We propose a novel semismooth equation approach to solving the standard dual decomposition formulation of NUM.We show that under fairly mild assumptions that the approach converges locally superlinearly to the solution of the NUM. Globalization of the proposed algorithm using a linesearch is also described. Numerical experiments show that the approach is competitive with a state-of-the-art nonlinear programming solver which solves the NUM without decomposition.","PeriodicalId":145065,"journal":{"name":"2013 American Control Conference","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6580580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Popular approach to solving NUM utilizes dual decomposition and subgradient iterations, which are extremely slow to converge. Recently there has been investigation of barrier methods for the solution of NUM which have been shown to posess second order convergence. However, the question of accelerating dual decomposition based methods is still open. We propose a novel semismooth equation approach to solving the standard dual decomposition formulation of NUM.We show that under fairly mild assumptions that the approach converges locally superlinearly to the solution of the NUM. Globalization of the proposed algorithm using a linesearch is also described. Numerical experiments show that the approach is competitive with a state-of-the-art nonlinear programming solver which solves the NUM without decomposition.
网络效用最大化的半光滑方程方法
求解NUM的常用方法是对偶分解和次梯度迭代,收敛速度极慢。近年来研究了求解NUM问题的势垒方法,并证明其具有二阶收敛性。然而,加速基于对偶分解方法的问题仍然是开放的。我们提出了一种新的半光滑方程方法来求解NUM的标准对偶分解公式。我们证明了在相当温和的假设下,该方法局部超线性收敛于NUM的解。我们还描述了使用线性研究的算法的全球化。数值实验表明,该方法与目前最先进的不分解非线性规划求解器相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信