User Steering Support in Large-scale Workflows

Renan Souza, M. Mattoso, P. Valduriez
{"title":"User Steering Support in Large-scale Workflows","authors":"Renan Souza, M. Mattoso, P. Valduriez","doi":"10.5753/sbbd_estendido.2021.18185","DOIUrl":null,"url":null,"abstract":"Large-scale workflows that execute on High-Performance Computing machines need to be dynamically steered by users. This means that users analyze big data files, assess key performance indicators, fine-tune parameters, and evaluate the tuning impacts while the workflows generate multiple files, which is challenging. If one does not keep track of such interactions (called user steering actions), it may be impossible to understand the consequences of steering actions and to reproduce the results. This thesis proposes a generic approach to enable tracking user steering actions by characterizing, capturing, relating, and analyzing them by leveraging provenance data management concepts. Experiments with real users show that the approach enabled the understanding of the impact of steering actions while incurring negligible overhead.","PeriodicalId":232860,"journal":{"name":"Anais Estendidos do XXXVI Simpósio Brasileiro de Banco de Dados (SBBD Estendido 2021)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XXXVI Simpósio Brasileiro de Banco de Dados (SBBD Estendido 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbbd_estendido.2021.18185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale workflows that execute on High-Performance Computing machines need to be dynamically steered by users. This means that users analyze big data files, assess key performance indicators, fine-tune parameters, and evaluate the tuning impacts while the workflows generate multiple files, which is challenging. If one does not keep track of such interactions (called user steering actions), it may be impossible to understand the consequences of steering actions and to reproduce the results. This thesis proposes a generic approach to enable tracking user steering actions by characterizing, capturing, relating, and analyzing them by leveraging provenance data management concepts. Experiments with real users show that the approach enabled the understanding of the impact of steering actions while incurring negligible overhead.
大规模工作流中的用户转向支持
在高性能计算机器上执行的大规模工作流需要由用户动态控制。这意味着当工作流生成多个文件时,用户需要分析大数据文件、评估关键性能指标、微调参数并评估调优影响,这是具有挑战性的。如果不跟踪这种交互(称为用户转向操作),就不可能理解转向操作的后果并重现结果。本文提出了一种通用的方法,通过利用来源数据管理概念来描述、捕获、关联和分析用户转向行为,从而实现对用户转向行为的跟踪。对真实用户的实验表明,该方法能够理解转向动作的影响,同时产生微不足道的开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信