Stereo matching in spatio-temporal accumulation for the estimation of vehicular mean speed

Nicolas Laverde, F. Calderon
{"title":"Stereo matching in spatio-temporal accumulation for the estimation of vehicular mean speed","authors":"Nicolas Laverde, F. Calderon","doi":"10.1109/STSIVA.2012.6340573","DOIUrl":null,"url":null,"abstract":"Measuring the speed of vehicles in a road is of great importance in the planning and regulation of traffic. This article shows a recent method of capture the video, which greatly reduces the computational complexity of an algorithm for estimating the average speed of a road. The basis of the processing technique used, consists in accumulating sections each video frame in a matrix, in which one dimension corresponds to a section accumulated in a video frame, usually a line “the space dimension” and the other dimension to each video frame “the timedimension”. The accumulation is done on vertical or horizontal lines and the resulting matrix can be seen as a new image. If an accumulation in done on the spatio-temporal video two lines spaced by a known distance, vehicle speed can be estimated calculating the difference of this on the time axis of the two resulting images. This document shows the results of applying common techniques in stereo matching to the problem of matching images resulting from the space-time accumulation, used for estimating the average speed of a road.","PeriodicalId":383297,"journal":{"name":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2012.6340573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Measuring the speed of vehicles in a road is of great importance in the planning and regulation of traffic. This article shows a recent method of capture the video, which greatly reduces the computational complexity of an algorithm for estimating the average speed of a road. The basis of the processing technique used, consists in accumulating sections each video frame in a matrix, in which one dimension corresponds to a section accumulated in a video frame, usually a line “the space dimension” and the other dimension to each video frame “the timedimension”. The accumulation is done on vertical or horizontal lines and the resulting matrix can be seen as a new image. If an accumulation in done on the spatio-temporal video two lines spaced by a known distance, vehicle speed can be estimated calculating the difference of this on the time axis of the two resulting images. This document shows the results of applying common techniques in stereo matching to the problem of matching images resulting from the space-time accumulation, used for estimating the average speed of a road.
基于时空累积的立体匹配估计车辆平均速度
测量道路上车辆的速度在交通规划和管理中是非常重要的。本文展示了一种最新的视频捕获方法,该方法大大降低了估计道路平均速度的算法的计算复杂度。所使用的处理技术的基础是在一个矩阵中积累每一视频帧的部分,其中一个维度对应于视频帧中积累的部分,通常是一条线“空间维度”,另一个维度对应于每一视频帧“时间维度”。在垂直线或水平线上进行积累,得到的矩阵可以看作是一个新的图像。如果在时空视频中以已知距离间隔的两条直线上进行积累,则可以通过计算其在两个结果图像的时间轴上的差来估计车辆速度。本文展示了将常用的立体匹配技术应用于由时空累积产生的图像匹配问题的结果,用于估计道路的平均速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信