A Study of Fusions of Multiple Estimates for Limit Cases

Jiří Ajgl, O. Straka
{"title":"A Study of Fusions of Multiple Estimates for Limit Cases","authors":"Jiří Ajgl, O. Straka","doi":"10.1109/MFI55806.2022.9913842","DOIUrl":null,"url":null,"abstract":"Decentralised estimation often sacrifices optimality for solution simplicity, while within the fusion under unknown correlation, a worst-case type of optimality is adopted. This paper studies the gap between the simple solution and the optimal one for special cases. Namely, symmetric configurations are considered for infinite number of estimates and also for infinite dimension of the state to be estimated. In these academic cases, the optimal solution is better than the simple one by low tens percent, if the size of circumscribing balls is considered. In practice, much lower gap can be expected.","PeriodicalId":344737,"journal":{"name":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"483 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI55806.2022.9913842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Decentralised estimation often sacrifices optimality for solution simplicity, while within the fusion under unknown correlation, a worst-case type of optimality is adopted. This paper studies the gap between the simple solution and the optimal one for special cases. Namely, symmetric configurations are considered for infinite number of estimates and also for infinite dimension of the state to be estimated. In these academic cases, the optimal solution is better than the simple one by low tens percent, if the size of circumscribing balls is considered. In practice, much lower gap can be expected.
极限情况下多重估计的融合研究
分散估计往往为了解的简单性而牺牲最优性,而在未知相关性下的融合中,采用最坏情况类型的最优性。本文研究了在特殊情况下的简单解与最优解之间的差距。也就是说,对于无限数量的估计和待估计状态的无限维,对称配置被考虑。在这些学术案例中,如果考虑到边界球的大小,最优解决方案比简单解决方案好不到10%。在实践中,可以预期的差距要小得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信