DeepSpatial'21: 2nd International Workshop on Deep Learning for Spatiotemporal Data, Applications, and Systems

Xun Zhou, Liang Zhao, Zhe Jiang, R. Stewart, S. Shekhar, Jieping Ye
{"title":"DeepSpatial'21: 2nd International Workshop on Deep Learning for Spatiotemporal Data, Applications, and Systems","authors":"Xun Zhou, Liang Zhao, Zhe Jiang, R. Stewart, S. Shekhar, Jieping Ye","doi":"10.1145/3447548.3469446","DOIUrl":null,"url":null,"abstract":"With the advancement of GPS and remote sensing technologies and the pervasiveness of smartphones and mobile devices, large amounts of spatiotemporal data are being collected from various domains. Knowledge discovery from spatiotemporal data is crucial in broad societal applications. Examples range from mapping flooded areas on satellite imagery for disaster response to monitoring crop health for food security, from estimating travel time between locations on Google Maps to forecasting hotspots of diseases like Covid-19 in public health. The recent success in deep learning technologies in computer vision and natural language processing provides unique opportunities for spatiotemporal data mining (e.g., automatically extracting spatial contextual features without manual feature engineering) but also faces unique challenges (e.g., spatial autocorrelation, heterogeneity, multiple scales, and resolutions, the existence of domain knowledge and constraints). This workshop provides a premium platform for researchers from both academia and industry to exchange ideas on opportunities, challenges, and cutting-edge techniques of deep learning for spatiotemporal data. We hope to inspire novel ideas and visions through the workshop and facilitate the development of this emerging research area.","PeriodicalId":421090,"journal":{"name":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447548.3469446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of GPS and remote sensing technologies and the pervasiveness of smartphones and mobile devices, large amounts of spatiotemporal data are being collected from various domains. Knowledge discovery from spatiotemporal data is crucial in broad societal applications. Examples range from mapping flooded areas on satellite imagery for disaster response to monitoring crop health for food security, from estimating travel time between locations on Google Maps to forecasting hotspots of diseases like Covid-19 in public health. The recent success in deep learning technologies in computer vision and natural language processing provides unique opportunities for spatiotemporal data mining (e.g., automatically extracting spatial contextual features without manual feature engineering) but also faces unique challenges (e.g., spatial autocorrelation, heterogeneity, multiple scales, and resolutions, the existence of domain knowledge and constraints). This workshop provides a premium platform for researchers from both academia and industry to exchange ideas on opportunities, challenges, and cutting-edge techniques of deep learning for spatiotemporal data. We hope to inspire novel ideas and visions through the workshop and facilitate the development of this emerging research area.
第二届时空数据、应用和系统深度学习国际研讨会
随着GPS和遥感技术的进步以及智能手机和移动设备的普及,大量的时空数据正在从各个领域被收集。从时空数据中发现知识在广泛的社会应用中是至关重要的。例如,从利用卫星图像绘制洪灾地区地图以应对灾害,到监测作物健康状况以保障粮食安全,从估算谷歌地图上不同地点之间的旅行时间,到预测2019冠状病毒病等公共卫生疾病的热点。近年来,深度学习技术在计算机视觉和自然语言处理领域的成功为时空数据挖掘提供了独特的机会(例如,无需手动特征工程即可自动提取空间上下文特征),但也面临着独特的挑战(例如,空间自相关、异质性、多尺度和分辨率、领域知识和约束的存在)。本次研讨会为来自学术界和工业界的研究人员就时空数据深度学习的机遇、挑战和前沿技术进行交流提供了一个优质的平台。我们希望通过研讨会激发新的想法和愿景,促进这一新兴研究领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信