Robust dual cumulative sum algorithm for cooperative spectrum sensing

Sachin Kadam, G. Sharma, R. Bansal
{"title":"Robust dual cumulative sum algorithm for cooperative spectrum sensing","authors":"Sachin Kadam, G. Sharma, R. Bansal","doi":"10.1109/NCC.2013.6487924","DOIUrl":null,"url":null,"abstract":"Spectrum sensing is an important problem in cognitive radio. Outliers present in the channel deteriorate the performance of existing non-robust algorithms. We consider the problem of limiting the influence of outliers in cooperative spectrum sensing techniques. In this work we use Huber's least favorable pair based on mixture model with appropriate nominal distributions in the DualCUSUM algorithm, a sequential change point detection algorithm used for spectrum sensing. We show that proposed robust DualCUSUM algorithm performs better than existing DualCUSUM algorithm in the presence of outliers. It is also shown by simulation results that better performance can be achieved when the design parameter used in obtaining the least favorable pair equals the actual contamination level in the data. A method to generate random numbers which follow least favorable pair of distributions is also discussed.","PeriodicalId":202526,"journal":{"name":"2013 National Conference on Communications (NCC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2013.6487924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Spectrum sensing is an important problem in cognitive radio. Outliers present in the channel deteriorate the performance of existing non-robust algorithms. We consider the problem of limiting the influence of outliers in cooperative spectrum sensing techniques. In this work we use Huber's least favorable pair based on mixture model with appropriate nominal distributions in the DualCUSUM algorithm, a sequential change point detection algorithm used for spectrum sensing. We show that proposed robust DualCUSUM algorithm performs better than existing DualCUSUM algorithm in the presence of outliers. It is also shown by simulation results that better performance can be achieved when the design parameter used in obtaining the least favorable pair equals the actual contamination level in the data. A method to generate random numbers which follow least favorable pair of distributions is also discussed.
协同频谱感知的鲁棒对偶累积和算法
频谱感知是认知无线电中的一个重要问题。通道中存在的异常值会降低现有非鲁棒算法的性能。研究了协同频谱感知技术中限制异常值影响的问题。在这项工作中,我们在DualCUSUM算法中使用了基于混合模型的Huber最不利对,该模型具有适当的标称分布,这是一种用于频谱感知的顺序变化点检测算法。结果表明,在存在异常值的情况下,本文提出的鲁棒DualCUSUM算法的性能优于现有的DualCUSUM算法。仿真结果还表明,当获取最不利对的设计参数等于数据中的实际污染水平时,可以获得较好的性能。本文还讨论了一种生成符合最不利分布对的随机数的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信